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III. Valuation Framework for CDS options 

In simulation, the underlying asset price is the most important variable. The 

suitable dynamics is selected to describe the underlying spreads. The relevant 

parameters such as volatilities and correlations in the dynamics are calibrated with 

market data. The simulated paths of the asset prices are obtained by repeatedly drawing 

random numbers. Finally, the option values can be easily calculated by averaging the 

simulated values of the paths. 

As for a CDS option, its underlying asset is a CDS contract and the primary 

variable to determine the value of a CDS contract is CDS spread. To get the value of a 

CDS option, we need to simulate the CDS spread. However, instead of directly 

simulating CDS spreads, we simulate forward one-period CDS spreads which can be 

stripped out from regular quotes for CDS contracts.  

The dynamics to be used in this paper are from the one-period forward CDS 

spread model presented by Brigo (2005). The main idea of this model is to convert the 

market quotes for CDS contracts to forward one-period CDS spreads, and simulate 

these spreads with specific dynamics. To get simulated multi-period CDS spread, we 

need only to substitute the simulated one-period CDS spreads with certain formula 

which will be introduced later. 

To get the simulated value of a European CDS option, we only need to find out the 

option prices at the maturity with the simulated CDS spreads, and discount these prices 

to obtain the option value. For an American option, the procedure may be a little more 
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complicated. We have to compute the values of the Americans option along each path 

by using least-squares method. 

The primary advantage of this model is that it is similar with LIBOR market model 

in interest rate theories. The one-period CDS spread model uses forward spreads as 

main variables , and assumes the forward one-period CDS spread is a martingale and 

log-normal distributed under respective probability measure. These concepts are the 

same as those in LIBOR market model. As long as the basic ideas about LIBOR market 

model are realized, path-dependent CDS-related products can be easily priced. 

In this chapter, we first introduce forward one-period CDS spread and the 

one-period CDS spread model. Secondly we present how we apply this model to a 

European CDS option. Finally, we detail how we price an American CDS option with 

this model. 

 

3.1. Dynamics of one-period forward CDS spreads  

The definition of one-period forward CDS spreads is similar with that of forward 

interest rates. A one-period forward CDS spread which is alive for three month in one 

month from now can be denoted by S(0;1m,3m). The first number zero in the bracket 

represents the current time, and the 1m and 3m mean the starting and ending time of a 

one-period forward CDS spread repeatedly. The starting and ending time of the spread 

do not change with the passage of time. Once the 1m is reached, the forward CDS 

spread one month ago now becomes a spot CDS spread. 
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The only difference between forward interest rates and one-period forward CDS 

spreads is that market quotes for one-period forward CDS spreads are still not universal. 

The prevalent quotes for CDS contracts are usually spot spreads. To obtain one-period 

forward CDS spreads, we have to strip these market CDS quotes with certain formula. 

An example is given to explain how to reach one-period CDS spreads. The 

one-period forward CDS spreads from now (time 0) to time T for a reference company 

are denoted by 𝑆 1 0 , 𝑆 2 0 … , 𝑆 𝑀 0 , where 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑀 .
2
 The k

th
 spread can 

be computed by
3
 

𝑆 𝑘 0 =  1 − 𝑅 
𝑃  0, 𝑇𝑘−1 ∙ 𝑃 0, 𝑇𝑘 𝑃 0, 𝑇𝑘−1  − 𝑃  0, 𝑇𝑘 

 𝑇𝑘 − 𝑇𝑘−1 ∙ 𝑃  0, 𝑇𝑘 
.             (3.1) 

 As Equation (3.1) shows, the one-period CDS spread is mainly composed of 

risk-free and corporate zero coupon bonds. The risk-free zero coupon bonds can be 

obtained by zero curve which is usually stripped from interest rate swaps. As for the 

corporate zero coupon bonds in Equation (3.1), we do not replace them with bond 

prices quoted in the market. This is primarily because not all corporate bonds for the 

reference company are liquid enough to reflect the true value of bonds. The bias may 

arise when we estimate the zero curve for the reference company. Therefore, inserting 

such data to our model may produce unrealistic results. 

To deal with this problem, we first recall from the following equation  

                                                       

2 For clarity, we simplify the notation 𝑆 0; 𝑇0, 𝑇1 , 𝑆 0; 𝑇1, 𝑇2 … , 𝑆 0; 𝑇𝑀−1, 𝑇𝑀  as 

𝑆 1 0 , 𝑆 2 0 … , 𝑆 𝑀 0 . 

3 For details, please see Brigo (2006). 
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𝑃  0, 𝑇𝑘 = 𝐸𝑄 𝐷 0, 𝑇𝑘 ∙ 1 𝜏>𝑇𝑘 |𝐺0 . 

 Under the assumption of independence of interest rates and default, this can be 

𝑃  0, 𝑇𝑘 = 𝐸𝑄 𝐷 0, 𝑇𝑘 |𝐺0 ∙ 𝐸𝑄 1 𝜏>𝑇𝑘 |𝐺0  

= 𝑃 0, 𝑇𝑘 ∙ 𝑄 𝜏 > 𝑇𝑘 |𝐺0 .                                             (3.2) 

The survival probabilities can be calculated from market quotes for CDS contracts 

on the reference company.
4
 Given the zero curve for interest rates and survival 

probabilities for the reference company, the values of corporate zero coupon bonds can 

be calculated. Therefore, we can obtain the set of one-period forward CDS spreads 

with Equation (3.1). 

Since one-period forward CDS spreads have been reached, we now discuss how 

the dynamics are derived. Changed to one-period CDS spread expression, Equation 

(2.15) can be rewritten as follows 

𝑆 𝑘 0 =
𝐸𝑄 𝐷 0, 𝑇𝑘 ∙ 1 𝑇𝑘−1<𝜏≤𝑇𝑘 |𝐹0 ∙  1 − 𝑅  

𝐶 𝑘 0 
,                        (3.3) 

where 𝐶 𝑘 0  means 𝐶𝑘−1,𝑘 0 . 

 Following the concept in the section 2.2.2, we set 𝐶 𝑘  as the numeraire. The 

dynamics for the one-period CDS spread under the probability measure 𝑄 𝑘  can be 

                                                       

4 In this paper, we adopt the reduced form model to match the survival probability, and the default 

intensity function is assumed to be piece-wise constant. 
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assumed to be 

𝑑𝑆 𝑘 𝑡 

𝑆 𝑘 𝑡 
= 𝜍𝑘 ∙ 𝑑𝑊 𝑘

𝑘 𝑡                                                  (3.4) 

where 𝜍𝑘  is the instantaneous volatility for the k
th

 one-period CDS spread, 𝑊 𝑘  is the 

Brownian motion under the measure 𝑄 𝑘
. 

 Equation (3.4) means that the dynamics for each one-period CDS forward spread 

are log-normal distributed under their respective probability measures. However, these 

dynamics are meaningful to valuation only when all the probability measures are 

changed to identical measure. Thus Equation (3.4) has to be further derived. 

Suppose now there is a CDS-related product involving two one-period CDS 

spreads, 𝑆 1 𝑡  and 𝑆 2 𝑡 . Both dynamics for 𝑆 1 𝑡  and 𝑆 2 𝑡  are martingales and 

log-normal distributed under the respective measures 𝑄 1  and 𝑄 2 . For meaningful 

valuation, the probability measures have to be consistent.  

With the formula for change of numeraire by Brigo (2006), we can overcome the 

problem of different probability measures. The Brownian motion for 𝑆 1 𝑡  under the 

measure 𝑄 2can be expressed as 

𝑑𝑊 1
1 𝑡 =  𝑑𝑊 1

2 𝑡 + 𝜌1,2 ∙ 𝑑𝑙𝑛  𝑆 1 𝑡  ∙ 𝑑𝑙𝑛  
𝐶 1 𝑡 

𝐶 2 𝑡 
                      (3.5) 

where 𝜌1,2 is the instantaneous correlation between 𝑆 1 𝑡  and 𝑆 2 𝑡 . 

Therefore, the dynamics for 𝑆 1 𝑡  under the measure 𝑄 2thus
 
is  

𝑑𝑆 1 𝑡 

𝑆 1 𝑡 
= −𝜍1

𝜌1,2 ∙ 𝜍2 ∙ 𝑆2 𝑡 ∙  𝑇2 − 𝑇1 

𝑆 2 𝑡 ∙  𝑇2 − 𝑇1 +  1 − 𝑅 
𝑑𝑡 + 𝜍2  ∙ 𝑑𝑊 1

2 𝑡                (3.6) 
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In practice, there are usually more than two dynamics when a CDS-related product 

is valued. This means Equation (3.6) has to be further generalized for valuation. 

Suppose we split a particular time spanning over the maturity of the CDS-related 

product into m periods, t0, t1, t2,…, tm. With the same procedure described above, the k
th

 

dynamics for one-period spread under the measure 𝑄 𝑚  is  

𝑑𝑆 𝑖 𝑡 

𝑆 𝑖 𝑡 
= −𝜍𝑖  

𝜌𝑖 ,𝑘 ∙ 𝜍𝑘 ∙ 𝑆 𝑘 𝑡  𝑇𝑘 − 𝑇𝑘−1 

𝑆 𝑘 𝑡 ∙  𝑇𝑘 − 𝑇𝑘−1 +  1 − 𝑅 

𝑚

𝑘=𝑖+1

𝑑𝑡 + 𝜍𝑖  ∙ 𝑑𝑊 𝑖
𝑚 𝑡         (3.7) 

Now that we have reached a consistent probability measure for the dynamics of the 

one-period CDS spreads, the next step is to derive a feasible formula for simulation. By 

Ito-Doeblin formula
5
, Equation (3.4) can be arranged as 

𝑑𝑙𝑛  𝑆 𝑖 𝑡  =  −𝜍𝑖  
𝜌𝑖 ,𝑘 ∙ 𝜍𝑘 ∙ 𝑆 𝑘 𝑡  𝑇𝑘 − 𝑇𝑘−1 

𝑆 𝑘 𝑡 ∙  𝑇𝑘 − 𝑇𝑘−1 +  1 − 𝑅 

𝑚

𝑘=𝑖+1

−
1

2
𝜍𝑖

2 𝑑𝑡 + 𝜍𝑖  ∙ 𝑑𝑊 𝑖
𝑚 𝑡  

(3.8) 

With a little algebra, Equation (3.8) becomes 

𝑙𝑛  𝑆 𝑖 𝑡 + ∆𝑡  

= 𝑙𝑛  𝑆 𝑖 0𝑡  +  −𝜍𝑖  
𝜌𝑖 ,𝑘 ∙ 𝜍𝑘 ∙ 𝑆 𝑘 𝑡 ∙  𝑇𝑘 − 𝑇𝑘−1 

𝑆 𝑘 𝑡 ∙  𝑇𝑘 − 𝑇𝑘−1 +  1 − 𝑅 

𝑚

𝑘=𝑖+1

−
1

2
𝜍𝑖

2 ∆𝑡

+ 𝜍𝑖   𝑊 𝑖
𝑛 𝑡 + ∆𝑡 − 𝑊 𝑖

𝑛 𝑡                                                                (3.9) 

                                                       

5 For more details, please see Steven E. Shreve (2000). 
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Equation (3.9) is the formula dealing with Monte Carlo simulation for one-period 

CDS spreads. This formula is almost the same with the formula for LIBOR market 

model in interest rate theory except that the denominator in Equation (3.9) appears a 

recovery rate term. Another difference behind the formula is that the market quotes for 

forward CDS spreads are not prevalent. To apply this model to the valuation, we have to 

strip out one-period forward spreads from market quotes for CDS contracts. After 

inserting these estimated spreads, we can start a Monte Carlo simulation. 

 

3.2. Valuation framework for European CDS options 

 Before simulating American CDS options, we have to notice that all simulated 

spreads resulting from Equation (3.9) are of one-period length. For holders of 

American CDS options, they exercise options on the basis of whether the CDS “spot 

spread” is greater than the exercise price. In other words, the holders’ decisions 

primarily depend on multi-period spreads instead of one-period spreads. Therefore, this 

means that the simulated one-period spreads have to be converted to multi-period 

spreads so that the valuation is consistent with the market convention. 

 Brigo (2006) derives a formula relating these two types of CDS spreads as 

𝑆0,𝑚  𝑡 ≈  𝑤𝑖 ∙ 𝑆 𝑖 𝑡 

𝑚

𝑖=1

                                             (3.10) 

where 
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𝑤𝑖 =  𝑡𝑖 − 𝑡𝑖−1 ∙ 𝑃  0, 𝑡𝑖   𝑡𝑖 − 𝑡𝑖−1 ∙ 𝑃  0, 𝑡𝑖 .

𝑚

𝑖=1

  

The term 𝑤𝑖  in Equation (3.10) can be seen as the weight of i
th

 one-period spread and 

is composed of a set of corporate zero coupon bonds observed at the initial time. 

Now that Equation (3.10) has provided us an idea of how to convert one-period 

simulated CDS spreads to multi-period simulated CDS spreads, we start to calculate 

the value of a European CDS option under this simulation framework. Suppose a 

European CDS option matures at time T0, and the underlying forward CDS contract 

starts from T0 to Tn, in which the protection premiums are paid at T1, T2,…Tn-1, Tn. 

Recalled from Equation (2.19), the option value under the measure 𝑄0,𝑛  is expressed 

as 

𝑉 0 =   𝑇𝑖 − 𝑇𝑖−1 ∙ 𝑃  0, 𝑇𝑖 

𝑛

𝑖=1

∙ 𝐸𝑄0,𝑛  𝑚𝑎𝑥 𝑆0,𝑛 𝑇0 − 𝐾, 0 |𝐹0        (3.11) 

For simulation purpose, we split the contract life from T0 to Tn into m periods, t0= 

T0, t1, t2,…, tm= Tn, and set 𝐶 𝑚  as the valuation numeraire. Thus the option value under 

the measure 𝑄 𝑚  is
6
 

𝑉 0 = 𝑃  0, 𝑇𝑚 ∙ 𝐸𝑄 𝑚  
  𝑇𝑖 − 𝑇𝑖−1 ∙ 𝑃  𝑇0, 𝑇𝑖 

𝑛
𝑖=1

𝑃  𝑇0, 𝑇𝑚 
𝑚𝑎𝑥 𝑆0,𝑛 𝑇0 − 𝐾, 0 |𝐹0  

   (3.12) 

                                                       

6 For more details, please see the appendix. 
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If we shift from the initial time to the option maturity 𝑇0, the option value appears 

to be 

𝑉 𝑇0 =   𝑇𝑖 − 𝑇𝑖−1 ∙ 𝑃  𝑇0, 𝑇𝑖 ∙ 𝑚𝑎𝑥 𝑆0,𝑛 𝑇0 − 𝐾, 0 

𝑛

𝑖=1

                           (3.13) 

Apparently, Equation (3.13) represents the option value at 𝑇0. The summation 

term explains that there are n cash flows of protection payments on the CDS contract 

once the option is exercised. 

In credit models, one of the most difficult parts is to describe a default event in 

mathematics. Asset values always dramatically change with the occurrence of a default. 

In spite of this, Equation (3.12) provides an easy way to value a European CDS option. 

We simulate CDS spreads at the option maturity, insert these spreads in Equation (3.13) 

to obtain the immediate exercise value, and reach the initial option values with 

Equation (3.12). It is unnecessary to consider the default event in simulation because 

this is implicitly included in the probability measure 𝑄 𝑚 . Intuitively speaking, the 

default information is actually contained in the corporate zero coupon bonds in 

Equation (3.12). Consequently, we only need to focus on the variations of the CDS 

spreads in simulating European CDS options. 

 

3.3. Valuation framework for American CDS options with least-squares 

Monte Carlo simulation 

Although the basic concepts of valuing American CDS options are much the same 
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with those of valuing European CDS options, there are still some differences between 

them. The clearest distinction is that the life of underlying CDS contract for an 

American CDS option varies as the holder exercises at different moments. For example, 

suppose the option maturity and the protection maturity for an American CDS option 

are 1 and 2 years respectively. When the option is exercised at the end of the six months, 

the holder will receive a CDS contract of which the life is four and a half years. This 

means the holder has to make periodical payments for four and a half years. 

Analogously, the life of the CDS contract is 4 years when the option is exercised at the 

end of one year. Consequently, the underlying CDS contract depends mainly on the 

time at which the holder exercises. 

To deal with this situation, let us further take an example to show how we apply 

the one-period spread model. Suppose a Bermudan CDS option with option maturity 

𝑇0  and protection maturity 𝑇𝑛  is exercisable at 𝑇1
′ , 𝑇2

′ …𝑇𝑛
′ = 𝑇0 . As mentioned 

above, the underlying CDS life is from 𝑇1
′  to 𝑇𝑛  when this option is exercised at 𝑇1

′ .  

Because Bermudan CDS option has the early-exercise characteristic, we have to 

start from the moment that the Bermudan CDS option matures and recursively 

calculate the simulated value. Suppose we simulate h paths of one-period CDS 

spreads for the underlying CDS contract. With Equation (3.10), the simulated 

multi-period CDS spreads at the option maturity, 

 𝑆1
𝑇𝑛
′ ,𝑇𝑛  𝑇𝑛

′  , 𝑆2
𝑇𝑛
′ ,𝑇𝑛  𝑇𝑛

′  …  𝑆ℎ
𝑇𝑛
′ ,𝑇𝑛  𝑇𝑛

′  ,  can be calculated from these simulated 

one-period CDS spreads. Using these simulated multi-period CDS spreads, we can get 

the corresponding immediate exercise values, 𝐸𝑉1 𝑇𝑛
′  , 𝐸𝑉2 𝑇𝑛

′  …,  𝐸𝑉ℎ 𝑇𝑛
′  , with 

Equation (3.13). 
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Only these immediate exercise values are not enough for us to find the value of the 

Bermudan option. We have to further look for the relationship of option values among 

exercisable moments so that the option value can be recursively calculated. The 

following formula relates the option value at 𝑇𝑘
′  with that at 𝑇𝑘−1

′ 7. 

𝑉 𝑇𝑘−1
′  = 𝑃  𝑇𝑘−1

′ , 𝑇𝑚 ∙ 𝐸𝑄𝑚  
𝑉 𝑇𝑘

′  

𝑃  𝑇𝑘
′ , 𝑇𝑚 

|𝐹𝑇𝑘
′                          (3.14) 

With Equation (3.14), the option values at 𝑇𝑛−1
′ , 

𝑉1 𝑇𝑛−1
′  , 𝑉2 𝑇𝑛−1

′  …, 𝑉ℎ 𝑇𝑛−1
′  , can be calculated from the corresponding immediate 

exercise values, 𝐸𝑉1 𝑇𝑛
′  , 𝐸𝑉2 𝑇𝑛

′  …, 𝐸𝑉ℎ 𝑇𝑛
′  . 

Let’s further combine the above procedure with least-squares regression. We 

refer to the simulated multi-period spreads at 𝑇𝑛−1
′  as the independent variable, and 

the option values at 𝑇𝑛−1
′  are set as dependent variable. Then we regress the dependent 

variable on the independent variable according to the following regression model. 

𝑉𝑖 𝑇𝑘
′  = 𝛽0 ∙ 𝐿0  𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′   + 𝛽1 ∙ 𝐿1  𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′   + 𝛽2 ∙ 𝐿2  𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′        

 𝑓𝑜𝑟 𝑖 = 1,2 …; k=1,2…n-1                                        (3.15) 

where 

𝐿0  𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′   = 𝑒𝑥𝑝  −𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′  2   

                                                       

7 This formula provides an idea of discount similar with the money market account in risk-neutral 

measure. The difference is that we use corporate zero coupon bonds as our discount factor here. 
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𝐿1  𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′   = 𝑒𝑥𝑝  −𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′  2  ∙  1 − 𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′    

𝐿2  𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′   = 𝑒𝑥𝑝  −𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′  2  ∙  1 − 2𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′  +  𝑆𝑖

𝑇𝑘
′ ,𝑇𝑛  𝑇𝑘

′   

2

  

 Thus a set of estimated option values at 𝑇𝑛−1
′ , 𝑉 1 𝑇𝑛−1

′  , 𝑉 2 𝑇𝑛−1
′  …, 𝑉 ℎ 𝑇𝑛−1

′  , 

are obtained. The immediate exercise value on each path, 𝐸𝑉1 𝑇𝑛−1
′  , 

𝐸𝑉2 𝑇𝑛−1
′  …, 𝐸𝑉ℎ 𝑇𝑛−1

′  , is then compared with the corresponding estimated option 

value. Once the exercise value is greater, the option is exercised at 𝑇𝑛−1
′ . Consequently, 

repeating these steps recursively until the initial time, we can determine the optimal 

exercise time on each path. With Equation (3.14), the Bermudan option thus can be 

valued by discounting these cash flows of which the option is optimally exercised.
8
 

For an American CDS option, we only need increase the number of the exercisable 

moments. The more the exercisable moments are, the more accurate the value of an 

American CDS option is. 

Now that a complete simulation of American CDS options can be implemented, 

let us specify our procedure to price American CDS options. 

1. Strip out the implied intensity from market quotes for CDS contracts, and 

calculate survival probabilities during protection maturity of an option 

so that corporate zero coupon bonds can be reached. 

                                                       

8 This method is known as least-squares approach. For more details, please see Longstaff and 

Schwartz (2001). 
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2. Strip out one-period CDS spreads by Equation (3.1), and calculate 

historical volatilities and correlations with these one-period CDS spreads 

to calibrate for simulation.9 

3. Simulate one-period CDS spreads with Equation (3.9), and convert them 

to desired multi-period CDS spreads. 

4. Calculate immediate exercise values during the option maturity with 

Equation (3.13). 

5. Calculate recursively initial values of American CDS options with 

least-squares approach.  

 

 

 

 

 

 

                                                       

9 We use historical volatilities and correlations as our proxy because the market for European CDS 

options is not prevalent. Brigo (2006) provides a formula dealing with calibration for correlation of 

one-period CDS spreads under the situation that the market is prevalent. 




