Citation Infomation |
No doi shows Citation Infomation |
社群 sharing |
Field | Value |
---|---|
Title: | 非線型時間序列之穩健預測 Robust Forecasting For Nonlinear Time Series |
Authors: | 劉勇杉 Liu, Yung Shan |
Contributors: | 吳柏林 Wu, Berlin 劉勇杉 Liu, Yung Shan |
Keywords: | 神經網路 雙線型模式 倒傳遞網路 匯率 neural networks bilinear model backpropagation exchange rates |
Date: | 1993 |
Issue Date: | 2016-04-29 16:32:31 (UTC+8) |
Description.abstract: | 由於時間序列在不同範疇的廣泛應用,許多實證結果已明白指出時間序列 With rapid development at the study of time series, the |
Reference: | [1] Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Fore-casting and Control. 2nd ed. San Francisco : Holden-Day.
[2] Brockett,R.W.(1976).Volterra series and geometric control theory. Au-tomatica, 12. 167-176. [3] Chan, W.S. and Tong, H. (1986). On test for non-linearity in time series analysis. J. Forecasting, 5, 217-28. [4] Cynbento, G., (1989). Approximation by superposition of a sigmoidal function, Mathematics of Control, Signals and Systems, 2, 303-314. [5] De Gooijer, J.G. and Kumar, K.(1992). Some recent developments in nonlinear time series modelling, testing and forecasting. International Journal of Forecasting, 8, 135-156. [6] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987-1008. [7] Funahashi, K. I., (1989). On the approximate of continuous mappings by neural networks, Neural Networks, 2, 183-192. [8] Granger, C.W.J. and Anderson, A. P. (1978). An Introduction to Bi-linear Time Series Models. Vandenhoeck and Ruprech, Gottingen. [9] Granger, C.W.J. (1991). Developments in the nonlinear analysis of economic series. Scand. J. Of Economics. 93(2), 263-276. [10] Grosberg, S. (1988). Studics of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition and Motor Control. Boston, MA: Reidel. [11] Guegan, D. and Pham, T.D. (1992). Power of the score test against bilinear time series models. Statistica Sinica, Vol. 2, 1, 157-169. [12] Hecht-Nielsen, R., (1989). Neurocomputing, IEEE Spectrum, March, 36-41. [13] Hinich, M. (1982). Testing for Gaussianity and linearity of a stationary time series. J. Time series Analysis, Vol.3, No.3, 169-76. [14] Kolen, J. F. and Goel, A. K. (1991). Learning in parallel distributed processing networks: computational complexity and information con-tent. IEEE Transactions on Systems, Man, and Cybernetics, 21, 2, 359-367. [15] Kosko, B. (1992). Neural Networks for Signal Processing, Prentice Hall, Englewood Cliffs, NJ. [16] Lapedes, A., and Farber, R., (1988). How Neural Nets Work. The-oretical Division. Los Alamos National Laboratory Los Alamos, NM 87545. [17] Luukkonen, R., Saikkonen P. and Terasvirta, T. (1988). Testing lin-earity against smooth transition autocorrelation models. Biometrica, 75, 491-500. [18] McKenzie, E. (1985). Some simple models for discrete variate time series. In Time Series Analysis in Water Resources. (ed. K. W. Hipel), 645-650, AM. Water Res. Assoc. [19] Priestley, M. B. (1980). State-dependent models: a general approach to nonlinear time series. J. Time Series Anal. 1, 47-71. [20] Saikkonen, P. and Luukkonen, K. (1988). Lagrange multiplier test for testing non-linearities in time series models. Scand. J. of Statistics, 15, 55-68. [21] Saikkonen, P. and Luukkonen, K. (1991). Power properties of a time series linearity test against some simple bilinear alternatives. Statistica Sinica, Vol. 1, 2, 453-464. [22] Subba Rao, T. and Gabr, M. M. (1984). An Introduction to Bispectral Analysis and Bilinear Time Series Models. Lecture Notes in statistics, Springer- Verlag, London. [23] Tjoostheim, D.(1986). Some doubly stochastic time series models J. Time Ser. Analysis, 7, 51-72. [24] Tong, H. And Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. J. Roy. Statist. Soc. Ser. B, 42, 245-292. [25] Tsay, R. S. (1989). Testing and modeling threshold autoregressive pro-cesses. Journal of the American Statistical Association, 84, 231-240. [26] Tsay, R. S. (1991). Detecting and modeling nonlinearity in univariate time series analysis. Statistica Sinica, Vol. 1, 2, 431-51. [27] Weiss, A. A. (1986). ARCH and bilinear time series models: compari-son and combination. J. Business Economic Statistics. Vol. 4, No. 1, 59-70. [28] Wu, B., Liou, W. And Chen, Y. (1992). Robust forecasting for the stochastic models and chaotic models. J. Chinese Statist. Assoc. Vol.30, No. 2, 169-189. [29] Wu, B. And Shih, N. (1992). On the identification problem for bilinear time series models. J. Statist. Comput. Simul. Vol.43. 129-161. |
Description: | 碩士 國立政治大學 應用數學系 80155004 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#B2002004238 |
Data Type: | thesis |
DCField | Value | Language |
---|---|---|
dc.contributor.advisor | 吳柏林 | zh_TW |
dc.contributor.advisor | Wu, Berlin | en_US |
dc.contributor.author | 劉勇杉 | zh_TW |
dc.contributor.author | Liu, Yung Shan | en_US |
dc.creator (Authors) | 劉勇杉 | zh_TW |
dc.creator (Authors) | Liu, Yung Shan | en_US |
dc.date (Date) | 1993 | en_US |
dc.date.accessioned | 2016-04-29 16:32:31 (UTC+8) | - |
dc.date.available | 2016-04-29 16:32:31 (UTC+8) | - |
dc.date.issued (Issue Date) | 2016-04-29 16:32:31 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002004238 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/88741 | - |
dc.description (Description) | 碩士 | zh_TW |
dc.description (Description) | 國立政治大學 | zh_TW |
dc.description (Description) | 應用數學系 | zh_TW |
dc.description (Description) | 80155004 | zh_TW |
dc.description.abstract (Abstract) | 由於時間序列在不同範疇的廣泛應用,許多實證結果已明白指出時間序列 | zh_TW |
dc.description.abstract (Abstract) | With rapid development at the study of time series, the | en_US |
dc.description.tableofcontents | 1 Introduction 1
2 Neural Networks and Model-free Forecast 4 2.1 Motivation for forecasting nonlinear time series..........................................4 2.2 Architecture of multilayer feedforward network..........................................5 2.3 Practical application of back-propagation network......................................8 3 Simulated Study for Bilinear Time Series 12 4 On Forecasting Problem for Exchange Rates 17 4.1 General discussion......................................................................................17 4.2 Forecasting Performance.............................................................................18 5 Conclusions 27 A Tendencies of simulated bilinear time series 31 | zh_TW |
dc.source.uri (Source URI) | http://thesis.lib.nccu.edu.tw/record/#B2002004238 | en_US |
dc.subject (Keywords) | 神經網路 | zh_TW |
dc.subject (Keywords) | 雙線型模式 | zh_TW |
dc.subject (Keywords) | 倒傳遞網路 | zh_TW |
dc.subject (Keywords) | 匯率 | zh_TW |
dc.subject (Keywords) | neural networks | en_US |
dc.subject (Keywords) | bilinear model | en_US |
dc.subject (Keywords) | backpropagation | en_US |
dc.subject (Keywords) | exchange rates | en_US |
dc.title (Title) | 非線型時間序列之穩健預測 | zh_TW |
dc.title (Title) | Robust Forecasting For Nonlinear Time Series | en_US |
dc.type (Data Type) | thesis | en_US |
dc.relation.reference (Reference) | [1] Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Fore-casting and Control. 2nd ed. San Francisco : Holden-Day.
[2] Brockett,R.W.(1976).Volterra series and geometric control theory. Au-tomatica, 12. 167-176. [3] Chan, W.S. and Tong, H. (1986). On test for non-linearity in time series analysis. J. Forecasting, 5, 217-28. [4] Cynbento, G., (1989). Approximation by superposition of a sigmoidal function, Mathematics of Control, Signals and Systems, 2, 303-314. [5] De Gooijer, J.G. and Kumar, K.(1992). Some recent developments in nonlinear time series modelling, testing and forecasting. International Journal of Forecasting, 8, 135-156. [6] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987-1008. [7] Funahashi, K. I., (1989). On the approximate of continuous mappings by neural networks, Neural Networks, 2, 183-192. [8] Granger, C.W.J. and Anderson, A. P. (1978). An Introduction to Bi-linear Time Series Models. Vandenhoeck and Ruprech, Gottingen. [9] Granger, C.W.J. (1991). Developments in the nonlinear analysis of economic series. Scand. J. Of Economics. 93(2), 263-276. [10] Grosberg, S. (1988). Studics of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition and Motor Control. Boston, MA: Reidel. [11] Guegan, D. and Pham, T.D. (1992). Power of the score test against bilinear time series models. Statistica Sinica, Vol. 2, 1, 157-169. [12] Hecht-Nielsen, R., (1989). Neurocomputing, IEEE Spectrum, March, 36-41. [13] Hinich, M. (1982). Testing for Gaussianity and linearity of a stationary time series. J. Time series Analysis, Vol.3, No.3, 169-76. [14] Kolen, J. F. and Goel, A. K. (1991). Learning in parallel distributed processing networks: computational complexity and information con-tent. IEEE Transactions on Systems, Man, and Cybernetics, 21, 2, 359-367. [15] Kosko, B. (1992). Neural Networks for Signal Processing, Prentice Hall, Englewood Cliffs, NJ. [16] Lapedes, A., and Farber, R., (1988). How Neural Nets Work. The-oretical Division. Los Alamos National Laboratory Los Alamos, NM 87545. [17] Luukkonen, R., Saikkonen P. and Terasvirta, T. (1988). Testing lin-earity against smooth transition autocorrelation models. Biometrica, 75, 491-500. [18] McKenzie, E. (1985). Some simple models for discrete variate time series. In Time Series Analysis in Water Resources. (ed. K. W. Hipel), 645-650, AM. Water Res. Assoc. [19] Priestley, M. B. (1980). State-dependent models: a general approach to nonlinear time series. J. Time Series Anal. 1, 47-71. [20] Saikkonen, P. and Luukkonen, K. (1988). Lagrange multiplier test for testing non-linearities in time series models. Scand. J. of Statistics, 15, 55-68. [21] Saikkonen, P. and Luukkonen, K. (1991). Power properties of a time series linearity test against some simple bilinear alternatives. Statistica Sinica, Vol. 1, 2, 453-464. [22] Subba Rao, T. and Gabr, M. M. (1984). An Introduction to Bispectral Analysis and Bilinear Time Series Models. Lecture Notes in statistics, Springer- Verlag, London. [23] Tjoostheim, D.(1986). Some doubly stochastic time series models J. Time Ser. Analysis, 7, 51-72. [24] Tong, H. And Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. J. Roy. Statist. Soc. Ser. B, 42, 245-292. [25] Tsay, R. S. (1989). Testing and modeling threshold autoregressive pro-cesses. Journal of the American Statistical Association, 84, 231-240. [26] Tsay, R. S. (1991). Detecting and modeling nonlinearity in univariate time series analysis. Statistica Sinica, Vol. 1, 2, 431-51. [27] Weiss, A. A. (1986). ARCH and bilinear time series models: compari-son and combination. J. Business Economic Statistics. Vol. 4, No. 1, 59-70. [28] Wu, B., Liou, W. And Chen, Y. (1992). Robust forecasting for the stochastic models and chaotic models. J. Chinese Statist. Assoc. Vol.30, No. 2, 169-189. [29] Wu, B. And Shih, N. (1992). On the identification problem for bilinear time series models. J. Statist. Comput. Simul. Vol.43. 129-161. | zh_TW |
NO.64,Sec.2,ZhiNan Rd.,Wenshan District,Taipei City 11605,Taiwan (R.O.C.)
11605 臺北市文山區指南路二段64號 Tel:+886-2-2939-3091
© 2016 National ChengChi University All Rights Reserved.
DSpace Software Copyright © 2002-2004 MIT & Hewlett-Packard / Enhanced by NTU Library IR team Copyright © 2006-2017 - 問題回報 Problem return