Citation Infomation |
No doi shows Citation Infomation |
社群 sharing |
Field | Value |
---|---|
Title: | 殼域上的 -方程解與均勻估計 |
Authors: | 謝佩玲 Peiling Hsieh |
Contributors: | 陳天進 Ten-ging Chen 謝佩玲 Peiling Hsieh |
Keywords: | 均勻估計 |
Date: | 2002 |
Issue Date: | 2009-09-17 13:44:46 (UTC+8) |
Description.abstract: | 在這篇論文裡,我們將用Henkin的積分表現法寫出***u=f在C^n上的球域與殼域的解。 除此之外,我們將估計常數C以滿足***-方程的均勻估計,即||u||∞≦C||f||∞。 In this thesis, we will write down the Henkin's solutions of ***u=f for arbitrary ***-closed (0,1)-form f on the open balls and shell domains in C^n, and then proceed to find an explicit upper bound C such that the uniform estimates hold in these domains; that is, ||u||∞≦C||f||∞. |
Reference: | [1] T. G. Chen, On Henkin's solution of the ***-problem on strictly convex domains in C^n, Universtity of California at Berkeley Ph. D. Thesis, 1985. [2] T. G. Chen, Geometry of strictly convex domains and an application to the uniform estimate of the ***-problem, Trans. Amer. Math. Soc. 347, (1995), 2127-2137. [3] T. G. Chen and L. J. Lin, Integral representation of solution for ***u=f and its uniform estimate on ellipsoids, Soochow Journal of Mathematics 21, (1995), 313-334. [4] H. Grauert and I. Lieb, Das Ramirezsche Integral und die Losung der Gleichung im Bereich der beschrankten Formen, Rice Univ. Studies 56(1970) no. 2, 29-50. [5] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and applications to the ***-problem, Mat. Sb. 82(124), 300-308 (1979); Math. U.S.S.R. Sb. 11(1970), 273-281. [6] G. M. Henkin and J. Leuterer, Theory of functions on complex manifolds, Birkfauser, Boston, Mass., 1984. [7] L. Hormander, L^2 estimates and existence theorems for the *** operator, Acta Math., 113(1965), 82-152. [8] L. Hormander, Introduction to complex analysis in several variables, North Holland, Amsterdam, 1973. [9] N. Kerzman, Holder and L^p estimates for solution of ***u=f on strongly pseudoconvex domains, Comm. Pure. Appl. Math., XXIV(1971), 301-380. [10]S. G. Krantz, Function theory of several complex variables, 2nd ed. Wadsworth and Brooks, pacific Grove, CA. [11]S. Long, Comples analysis, Reading, Mass., Addison-Wesley Pub. Co., 1977. [12]E. Ramirez, Divisions problem in der komplexen analysis mit einer Anwendung auf Rand integral darstellung, Math. Ann., 184(1970), 172-187. [13]R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer- Verlag New York Inc., 1986. [14]H. Shi, Uniform estimates for the ***-equation on balls, Proc. of the 1980 Beijing Symp. on differential geometry and differential equations, Science Press, Beihing, China, 1982, Gordon and Breach, Science Publisher, Inc., New York, vol. 3, 1431-1439. |
Description: | 碩士 國立政治大學 應用數學研究所 89751010 91 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0089751010 |
Data Type: | thesis |
DCField | Value | Language |
---|---|---|
dc.contributor.advisor | 陳天進 | zh_TW |
dc.contributor.advisor | Ten-ging Chen | en_US |
dc.contributor.author | 謝佩玲 | zh_TW |
dc.contributor.author | Peiling Hsieh | en_US |
dc.creator (Authors) | 謝佩玲 | zh_TW |
dc.creator (Authors) | Peiling Hsieh | en_US |
dc.date (Date) | 2002 | en_US |
dc.date.accessioned | 2009-09-17 13:44:46 (UTC+8) | - |
dc.date.available | 2009-09-17 13:44:46 (UTC+8) | - |
dc.date.issued (Issue Date) | 2009-09-17 13:44:46 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0089751010 | en_US |
dc.identifier.uri (URI) | http://nccuir.lib.nccu.edu.tw/handle/140.119/32557 | - |
dc.description (Description) | 碩士 | zh_TW |
dc.description (Description) | 國立政治大學 | zh_TW |
dc.description (Description) | 應用數學研究所 | zh_TW |
dc.description (Description) | 89751010 | zh_TW |
dc.description (Description) | 91 | zh_TW |
dc.description.abstract (Abstract) | 在這篇論文裡,我們將用Henkin的積分表現法寫出***u=f在C^n上的球域與殼域的解。 除此之外,我們將估計常數C以滿足***-方程的均勻估計,即||u||∞≦C||f||∞。 | zh_TW |
dc.description.abstract (Abstract) | In this thesis, we will write down the Henkin's solutions of ***u=f for arbitrary ***-closed (0,1)-form f on the open balls and shell domains in C^n, and then proceed to find an explicit upper bound C such that the uniform estimates hold in these domains; that is, ||u||∞≦C||f||∞. | en_US |
dc.description.tableofcontents | Abstract i 中文摘要 ii 1.Introduction 1 2.General Results 3 3.Integral Representation of Solution on Balls in C^n 8 4.Uniform Estimate for Solution Balls in C^n 10 5.Uniform Estimate for Solution on Shell Domains in C^n 25 References 34 | zh_TW |
dc.format.extent | 76137 bytes | - |
dc.format.extent | 98589 bytes | - |
dc.format.extent | 125631 bytes | - |
dc.format.extent | 292759 bytes | - |
dc.format.extent | 94585 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (Source URI) | http://thesis.lib.nccu.edu.tw/record/#G0089751010 | en_US |
dc.subject (Keywords) | 均勻估計 | zh_TW |
dc.title (Title) | 殼域上的 -方程解與均勻估計 | zh_TW |
dc.type (Data Type) | thesis | en |
dc.relation.reference (Reference) | [1] T. G. Chen, On Henkin's solution of the ***-problem on | zh_TW |
dc.relation.reference (Reference) | strictly convex domains in C^n, Universtity of California | zh_TW |
dc.relation.reference (Reference) | at Berkeley Ph. D. Thesis, 1985. | zh_TW |
dc.relation.reference (Reference) | [2] T. G. Chen, Geometry of strictly convex domains and an | zh_TW |
dc.relation.reference (Reference) | application to the uniform estimate of the ***-problem, | zh_TW |
dc.relation.reference (Reference) | Trans. Amer. Math. Soc. 347, (1995), 2127-2137. | zh_TW |
dc.relation.reference (Reference) | [3] T. G. Chen and L. J. Lin, Integral representation of | zh_TW |
dc.relation.reference (Reference) | solution for ***u=f and its uniform estimate on ellipsoids, | zh_TW |
dc.relation.reference (Reference) | Soochow Journal of Mathematics 21, (1995), 313-334. | zh_TW |
dc.relation.reference (Reference) | [4] H. Grauert and I. Lieb, Das Ramirezsche Integral und die | zh_TW |
dc.relation.reference (Reference) | Losung der Gleichung im Bereich der beschrankten Formen, | zh_TW |
dc.relation.reference (Reference) | Rice Univ. Studies 56(1970) no. 2, 29-50. | zh_TW |
dc.relation.reference (Reference) | [5] G. M. Henkin, Integral representations of functions | zh_TW |
dc.relation.reference (Reference) | holomorphic in strictly pseudoconvex domains and | zh_TW |
dc.relation.reference (Reference) | applications to the ***-problem, Mat. Sb. 82(124), 300-308 | zh_TW |
dc.relation.reference (Reference) | (1979); Math. U.S.S.R. Sb. 11(1970), 273-281. | zh_TW |
dc.relation.reference (Reference) | [6] G. M. Henkin and J. Leuterer, Theory of functions on complex | zh_TW |
dc.relation.reference (Reference) | manifolds, Birkfauser, Boston, Mass., 1984. | zh_TW |
dc.relation.reference (Reference) | [7] L. Hormander, L^2 estimates and existence theorems for the | zh_TW |
dc.relation.reference (Reference) | *** operator, Acta Math., 113(1965), 82-152. | zh_TW |
dc.relation.reference (Reference) | [8] L. Hormander, Introduction to complex analysis in several | zh_TW |
dc.relation.reference (Reference) | variables, North Holland, Amsterdam, 1973. | zh_TW |
dc.relation.reference (Reference) | [9] N. Kerzman, Holder and L^p estimates for solution of ***u=f | zh_TW |
dc.relation.reference (Reference) | on strongly pseudoconvex domains, Comm. Pure. Appl. Math., | zh_TW |
dc.relation.reference (Reference) | XXIV(1971), 301-380. | zh_TW |
dc.relation.reference (Reference) | [10]S. G. Krantz, Function theory of several complex variables, | zh_TW |
dc.relation.reference (Reference) | 2nd ed. Wadsworth and Brooks, pacific Grove, CA. | zh_TW |
dc.relation.reference (Reference) | [11]S. Long, Comples analysis, Reading, Mass., Addison-Wesley | zh_TW |
dc.relation.reference (Reference) | Pub. Co., 1977. | zh_TW |
dc.relation.reference (Reference) | [12]E. Ramirez, Divisions problem in der komplexen analysis mit | zh_TW |
dc.relation.reference (Reference) | einer Anwendung auf Rand integral darstellung, Math. Ann., | zh_TW |
dc.relation.reference (Reference) | 184(1970), 172-187. | zh_TW |
dc.relation.reference (Reference) | [13]R. M. Range, Holomorphic functions and integral | zh_TW |
dc.relation.reference (Reference) | representations in several complex variables, Springer- | zh_TW |
dc.relation.reference (Reference) | Verlag New York Inc., 1986. | zh_TW |
dc.relation.reference (Reference) | [14]H. Shi, Uniform estimates for the ***-equation on balls, | zh_TW |
dc.relation.reference (Reference) | Proc. of the 1980 Beijing Symp. on differential geometry | zh_TW |
dc.relation.reference (Reference) | and differential equations, Science Press, Beihing, China, | zh_TW |
dc.relation.reference (Reference) | 1982, Gordon and Breach, Science Publisher, Inc., New York, | zh_TW |
dc.relation.reference (Reference) | vol. 3, 1431-1439. | zh_TW |
NO.64,Sec.2,ZhiNan Rd.,Wenshan District,Taipei City 11605,Taiwan (R.O.C.)
11605 臺北市文山區指南路二段64號 Tel:+886-2-2939-3091
© 2016 National ChengChi University All Rights Reserved.
DSpace Software Copyright © 2002-2004 MIT & Hewlett-Packard / Enhanced by NTU Library IR team Copyright © 2006-2017 - 問題回報 Problem return