Citation Infomation |
No doi shows Citation Infomation |
社群 sharing |
Field | Value |
---|---|
Title: | 非線性微分方程之研究 Some Studies in the Nonlinear Differential Equations |
Authors: | 陳怡真 Chen, Yi-Chen |
Contributors: | 蔡隆義 Tsai, Long-Yi 陳怡真 Chen, Yi-Chen |
Keywords: | 微分方程 爆破 爆破速率 能量方法 生成時間 differential equation blow-up blow-up rate blow-up constant energy method life-span time |
Date: | 1998 |
Issue Date: | 2016-04-27 16:43:15 (UTC+8) |
Description.abstract: | 在這篇論文中,我們討論具有初始值條件的二階微分方程 □□□□□ In this paper we shall consider the initial value problem for second order differential equation of the form □□□□□ List of Figures List of Tables Introduction Chapter1 On the Scalar Differential Equation 1.1 Fundamental Lemmas 1.2 The Asymptotic Behavior of the Global Solutions 1.3 Estimates for the Life Span of the Blow-up Solutions 1.3.1 1.3.2 1.4 Blow-up Rate and Blow-up Constant 1.5 Properties of the Life Span Time 1.5.1 The Property of 1.5.2 The Property of 9 1.5.3 The Behavior of the Blow-up Constant Chapter 2 On The System of Differential Equations 2.1 Fundamental Lemmas 2.2 Estimates for the Life Span Time 2.3 Particular System 2.3.1 Fundamental Lemmas 2.3.2 Estimates for the Life Span Time (I) (II) Chapter 3 Conclusions 3.1 The Scalar Differential Equation 3.1.1 Table 3.1.2 Examples 3.2 The System of Differential Equation 3.2.1 Table 3.3 Particular System 3.3.1 Table 3.3.2 Examples Bibliography Appendix |
Reference: | [1] D. O'Regan, Some general existence principles and results for □□□□□(0<t<1), SIAM Journal on Mathematical Analysis, 24, 648-668,(1993).
[2] J. R. Esteban and J. L. Vazquez, On the Equation of Turbulent in One-dimensional Porous Media, Nonlinear Analysis, 10, 1303-1325, (1986). [3] Jiun-Hon Lin, The Regularity of Solutions for Non-linear Differential Equation □□□□□, Master thesis, National Chengchi University, ( 1999). [4] Junyu Wang and Wenjie Gao, A Singular Boundary Value Problem for the One-dimensional p -Laplacian, Journal of Mathematical Analysis and Applications, 201, 851-866,(1996). [5] L. E. Bobisub and D. O'Regan, Existence of Positive Solutions for Singular Ordinary Differential Equations with Nonlinear Boundary Conditions, Proceedings of the American Mathematical Society, 124, 2081-2087, (1996). [6] M. A. Herrero and J. L. Vazquez, On the Propagation Properties of a Nonlinear Degenerate Parabolic Equation, Communications in Partial Differential Equations, 7, 1381-1402, (1982). [7] Meng-Rong Li, On the Differential Equation □□□□□, Preprint, National Chengchi University, (1999). [8] Zuodong Yang, Existence of Positive Solutions for a Class of Singular two Point Boundary Value Problems of Second Order Nonlinear Equation, Applied Mathematics and Mechanics, 17, 465-476, (1996). |
Description: | 碩士 國立政治大學 應用數學系 86751010 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#B2002001690 |
Data Type: | thesis |
DCField | Value | Language |
---|---|---|
dc.contributor.advisor | 蔡隆義 | zh_TW |
dc.contributor.advisor | Tsai, Long-Yi | en_US |
dc.contributor.author | 陳怡真 | zh_TW |
dc.contributor.author | Chen, Yi-Chen | en_US |
dc.creator (Authors) | 陳怡真 | zh_TW |
dc.creator (Authors) | Chen, Yi-Chen | en_US |
dc.date (Date) | 1998 | en_US |
dc.date.accessioned | 2016-04-27 16:43:15 (UTC+8) | - |
dc.date.available | 2016-04-27 16:43:15 (UTC+8) | - |
dc.date.issued (Issue Date) | 2016-04-27 16:43:15 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002001690 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/86785 | - |
dc.description (Description) | 碩士 | zh_TW |
dc.description (Description) | 國立政治大學 | zh_TW |
dc.description (Description) | 應用數學系 | zh_TW |
dc.description (Description) | 86751010 | zh_TW |
dc.description.abstract (Abstract) | 在這篇論文中,我們討論具有初始值條件的二階微分方程 □□□□□ | zh_TW |
dc.description.abstract (Abstract) | In this paper we shall consider the initial value problem for second order differential equation of the form □□□□□ | en_US |
dc.description.abstract (Abstract) | List of Figures
List of Tables Introduction Chapter1 On the Scalar Differential Equation 1.1 Fundamental Lemmas 1.2 The Asymptotic Behavior of the Global Solutions 1.3 Estimates for the Life Span of the Blow-up Solutions 1.3.1 1.3.2 1.4 Blow-up Rate and Blow-up Constant 1.5 Properties of the Life Span Time 1.5.1 The Property of 1.5.2 The Property of 9 1.5.3 The Behavior of the Blow-up Constant Chapter 2 On The System of Differential Equations 2.1 Fundamental Lemmas 2.2 Estimates for the Life Span Time 2.3 Particular System 2.3.1 Fundamental Lemmas 2.3.2 Estimates for the Life Span Time (I) (II) Chapter 3 Conclusions 3.1 The Scalar Differential Equation 3.1.1 Table 3.1.2 Examples 3.2 The System of Differential Equation 3.2.1 Table 3.3 Particular System 3.3.1 Table 3.3.2 Examples Bibliography Appendix | - |
dc.description.tableofcontents | List of Figures
List of Tables Introduction Chapter1 On the Scalar Differential Equation 1.1 Fundamental Lemmas 1.2 The Asymptotic Behavior of the Global Solutions 1.3 Estimates for the Life Span of the Blow-up Solutions 1.3.1 1.3.2 1.4 Blow-up Rate and Blow-up Constant 1.5 Properties of the Life Span Time 1.5.1 The Property of 1.5.2 The Property of 9 1.5.3 The Behavior of the Blow-up Constant Chapter 2 On The System of Differential Equations 2.1 Fundamental Lemmas 2.2 Estimates for the Life Span Time 2.3 Particular System 2.3.1 Fundamental Lemmas 2.3.2 Estimates for the Life Span Time (I) (II) Chapter 3 Conclusions 3.1 The Scalar Differential Equation 3.1.1 Table 3.1.2 Examples 3.2 The System of Differential Equation 3.2.1 Table 3.3 Particular System 3.3.1 Table 3.3.2 Examples Bibliography Appendix | zh_TW |
dc.source.uri (Source URI) | http://thesis.lib.nccu.edu.tw/record/#B2002001690 | en_US |
dc.subject (Keywords) | 微分方程 | zh_TW |
dc.subject (Keywords) | 爆破 | zh_TW |
dc.subject (Keywords) | 爆破速率 | zh_TW |
dc.subject (Keywords) | 能量方法 | zh_TW |
dc.subject (Keywords) | 生成時間 | zh_TW |
dc.subject (Keywords) | differential equation | en_US |
dc.subject (Keywords) | blow-up | en_US |
dc.subject (Keywords) | blow-up rate | en_US |
dc.subject (Keywords) | blow-up constant | en_US |
dc.subject (Keywords) | energy method | en_US |
dc.subject (Keywords) | life-span time | en_US |
dc.title (Title) | 非線性微分方程之研究 | zh_TW |
dc.title (Title) | Some Studies in the Nonlinear Differential Equations | en_US |
dc.type (Data Type) | thesis | en_US |
dc.relation.reference (Reference) | [1] D. O'Regan, Some general existence principles and results for □□□□□(0<t<1), SIAM Journal on Mathematical Analysis, 24, 648-668,(1993).
[2] J. R. Esteban and J. L. Vazquez, On the Equation of Turbulent in One-dimensional Porous Media, Nonlinear Analysis, 10, 1303-1325, (1986). [3] Jiun-Hon Lin, The Regularity of Solutions for Non-linear Differential Equation □□□□□, Master thesis, National Chengchi University, ( 1999). [4] Junyu Wang and Wenjie Gao, A Singular Boundary Value Problem for the One-dimensional p -Laplacian, Journal of Mathematical Analysis and Applications, 201, 851-866,(1996). [5] L. E. Bobisub and D. O'Regan, Existence of Positive Solutions for Singular Ordinary Differential Equations with Nonlinear Boundary Conditions, Proceedings of the American Mathematical Society, 124, 2081-2087, (1996). [6] M. A. Herrero and J. L. Vazquez, On the Propagation Properties of a Nonlinear Degenerate Parabolic Equation, Communications in Partial Differential Equations, 7, 1381-1402, (1982). [7] Meng-Rong Li, On the Differential Equation □□□□□, Preprint, National Chengchi University, (1999). [8] Zuodong Yang, Existence of Positive Solutions for a Class of Singular two Point Boundary Value Problems of Second Order Nonlinear Equation, Applied Mathematics and Mechanics, 17, 465-476, (1996). | zh_TW |
NO.64,Sec.2,ZhiNan Rd.,Wenshan District,Taipei City 11605,Taiwan (R.O.C.)
11605 臺北市文山區指南路二段64號 Tel:+886-2-2939-3091
© 2016 National ChengChi University All Rights Reserved.
DSpace Software Copyright © 2002-2004 MIT & Hewlett-Packard / Enhanced by NTU Library IR team Copyright © 2006-2017 - 問題回報 Problem return