考	試	科目	線性代數	所別	應用數學系	考試時期	4月17日 星期六	下午第二節
	Let $P_2 = \{ax^2 + bx + c \mid a, b, c \in \Re\}$ and $T: P_2 \to P_2$ be a mapping defined by $T(ax^2 + bx + c) = 2cx^2 - ax + b$ for all $ax^2 + bx + c \in P_2$. (a) Show that T is a linear transformation. (5%) (b) Is T an isomorphism of P_2 ? (c) Find the matrix representation $[T]_{\alpha}$ of T with respect to the ordered basis $\alpha = \{x^2, x, 1\}$. (5%) (d) Find the determinant of T .							
2.	(a) (b)	Is $v \in F$ ind t	S? he orthogonal	projectio	$n \Re^4$ spanned by $n \text{ of } v \text{ onto } S$.		0,1 0,1)} and v	$ \psi = (1,2,3,4) \in \mathbb{R}^4. (5\%) (10\%) (10\%) $
		of A	can be expre	ssed as a $A^{-1} = 0$ teger k	vertible) $n \times n$ is polynomial in A and $a_0, \dots, a_k \in S$	t, that is, $+ \cdots + a_1 A + a_2$		nverse matrix A ⁻¹ 国立 (10%) 大學 圖書
		A b		quare mat	rix of rank one. S		$= \alpha A$ for some	(5%) $\alpha \in \Re . (10\%)$
	(a) (b) (c)	All eigen A is	genvalues of vectors of A positive defin	A are re correspondite if and	onding to distinct only if $A = B^T E$	eigenvalues a	onsingular matri	
	Ide 備		. T		* + 3x + y - 1 = 0 **	and transfor	m the conic into	o standard form. (10%)
	命	題:	老 師:		-5	3- (簽章)93年	- う月30日

(b) Use (a) to deduce the inequality
$$|\cos x - \cos y| \le |x - y|$$
, $\forall x, y \in \Re$.

- 5. For each $n = 1, 2, \dots$, let $f_n(x) = x^n$, $0 \le x \le 1$.
 - (a) Prove that the sequence $\{f_n\}$ converges pointwise on [0,1]. (b) Does $\{f_n\}$ converge uniformly on [0,1]? Justify your answer.

試

題

考

備

隨

卷

繳

6. Use Lagrange's multiplier to prove that the minimum distance from a point (x_0, y_0, z_0) to a plane ax + by + cz + d = 0 is $\frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$. (10%

(8%

(8%

7. Evaluate the line integral $\oint_C xy^3 dx + 2x^2y^2 dy$, where C denotes the boundary of the region is the first quadrant enclosed by the x-axis, the line x = 1, and the curve $y = x^3$. (10%)

交