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Abstract

This paper proposes the bootstrap proce-
dures for testing for the presence of a unit
root in an AR model with weakly dependent
errors. Our bootstrap proposal is based on
an antoregressive approximation of order in-
creasing with sample size to the model. We
establish the validity of such bootstrap ap-
proximations for the the limiting distribution
of the test statistics considered. These statis-
ties include commonly-used ADF, DF
(LS, MZ and MZ — GLS. We show as well
that estimates of the bootstrap long-run vari-
anece or regression coefficients when the model
allows for intercept and time trend are equiv-
alent to their asvmptotic counterparts. At lit-
tle cost of power loss, our resampling scheme
vields satisfactory control over the rejection
probability for most of very small sample sizes
in simulations.
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1 Introduction

Testing for the presence of a unit root appears
to be becoming a common empirical practice
in economic time series analysis. The need for
such a testing strategy may partly arise from
the implication of economic theories, such as
the purchasing power parity hvpothesis and
the persistence theory of innovations to the
GDP. to the data. Partly, this is becanse the
presence of a unit root in the series can in-
validate statistical inference withont paying
attention to the non-standard asymptotic na-
ture of the unit root statisties. Care needs
to be exercised accordingly it a unit root is
detected. The last decade has thus seen a
booming development of the unit root litera-
ture. either on econometrie techniques or on
their applications.

The ongoing research on the econometric
methods has been more or less geared toward
improving inference from the extant unit root
test statistics. The improvement in the finite
samples can be achieved by both reducing size
distortion through a better selection of lag or-
ders (Ng and Perron; 1995, 2001), robust es-
timates of nuisance parameters (Ng and Per-
ron, 1998) or small-sample adjustments to
the test statistics (Perron and Ng, 1996), and
gaining power through an efficient removal of
trends from the data (Elliot, Rothenberg and
Stock, 1996; and Ng and Perron, 2001,



We in this paper make the same effort to
improve inference on unit root by taking the
bootstrapping approach. Like most of the
earlier contributions, the bootstrap proposal
we set out for the unit root testing is to vield
better estimates of the Anite-sample critical
values, For that, the bootstrap however di-
rectly works on estimating the distribution
functions of the test statistics, generating es-
timates of the Anite-sample eritical values as
a result. This route seems to be natural to
work on, to the extent that the probahilistic
information is contained in the distribution
funetion.  We bootstrap the test statistics
that have heen subject to intensive studies,
specifically the classes of TN test statistics by
Dicky and Fuller (1975) and Said and Dicky
(1984) and # test statisties by Phillips and
Perron (1988) and subsequently modified by
Perron and Ng (1996). The focal point here is
on the version of these statistics with GLS de-
trending (see Elliot ef al. (1996) and Ng and
Perron (2001). While the modified statistics
attain satisfactory finite-sample performance
over their previous versions, we demonstrate
in the experimental simulations that, with
their bootstrap counterparts, there still has
room to further reduee size bias for sample
sizes that often encounter in practiee or even
smaller, at the same time maintaining compa-
rable power to those with size-adjusted erit-
ical values. This proves to be remarkable in
the situation with the presence of negative
moving-average innovations, known to pose
difficulty to the unit root testing (see eg.
Perron and Ng, 1996).

To justify our resampling algorithm, we es-
tablish the consistency of the bootstrap dis-
tribution of the test statistics, The asymp-
totie validity however is not obtained at the
cost of limiting the usefulness of the boot-
strap procedures. Our schemes arve applieable
to a wide spectrum of applications since the
model under study is built on the eondition
allowing for infinite-order moving average er-
ror processes, including fnite order ARM A
as special case. We borrow the idea of au-
toregressive approximation from Biithlmann
(1997) to reproduce samples. To deal with
the dependence properly in the data, as
Horowitz (2000) emphasizes, is crucial to

have the bootstrap well-perform.  Phillips
(2001) particularly shows that the bootstrap
that leaves aside the dependence would turn
a spurious regression into a cointegrating re-
gression.  The present results could thus be
seen as an important extension of the work
by Nankervis and Savin (1996) and Ferretti
and Romo (1996) that consider only did or
AR(1) errors.

Furthermore, the presence of the deter-
ministic trend in the model, while rendering
more reality, complicates the asymptotic ar-
gument for the bootstrap distribution consis-
tency. The argument for simple random-wal k
model can not be readily earried over to the
model with trend we consider here. As a byv-
produet, we show the asymptotic equivalence
of both the bootstrap trend eoefficient and
the bootstrap spectral density estimate at fre-
(UENCY Zero.

The plan of the paper is as follows. In Sec-
tion 2, we spell out the unit root test statistics
under study. Section 3 deseribes our boot-
strap resampling proposal. The consistency
is provided and discussed in Section 4 for
the bootstrap test distributions and parame-
ters. Section 5 investigates the small-sample
performance of the hootstrap proposal using
Monte-Carlo simulation. Both AR(1) and
M A1) errors are considered. The last sec-
tion contains coneluding remarks. Proofs of
the theorems and lemmas are given in the ap-
pendix.

2 Test Statistics

The model under study is an autoregressive
model with intercept and trend. The model
can expressed either in an unobserved compo-
nent form or in a reduced (regression) form.
For the former, we consider a series [y )7
that is generated by:

m

(B = Dt +ue4+m, w=am+u
i=0

(2 = > i to=1
i=0



where ¢, ™ (0,72} with an unknown distri-
bution F. Let $(L) = 1+ 57 L We
further assume the error process {w} 8 in-
vertible, i.e. (L) is non-zero on unit cir-
cle, and 7=, d);] < sc. The class of er-
ror processes considered therefore ineludes
the stationary and invertible ARMA process
as a special sub-class. Under these assiump-
tions, it is known that {u} ecan have an infi-
nite order autoregressive representation: v, =
300y ity + 6, where @(L) = W(L)T! =
1+ 325 1. This autoregressive represen-
tation of the errors indeed motivates our re-
sampling scheme proposed subsequently. The
spectral density at frequency zero of v, or the
so-called long-run variance then is defined to
be @ = a?P(1). DBesides, we assume the
wealk convergence holds for the partial sum of
errors, T-V45207 vy — aW(r). The model in
(17 allows for deterministic component when
setting m = 0 or 1.

The reduced form of the model is given by

m

e = 3 At + oy +

a0

0y At j
1

will be under investigation for their bootstrap
counterparts to improve inference on the unit
root hyvpothesis. Particularly, we focus on the
test statistics under the (V1.8 detrending. !

2.1 ADF and DF — GLS tests

The ADF test is the (-statistic for o, = 0 in
the following antoregression

»
(4) Agly = aglly—y + Z i Ay + Eip

i—1
where the OLS detrended series g, = e
S G in which 5 is the OLS estimates

for the deterministic trend coefficients. To
implement the DF test, it requires a choice
of the autoregressive truncation lag, p that is
in practice determined by using AfC or BIC
criterion.

The D — (L5 tests is again a i-statistic,
vet differs from the ADF test by replacing
the (VLS detrending data with the ¢ 1L.5 one
in (4). The detrended LS series is con-

o ! structed as
with )
. (5) e = U ?ﬂfj:r.-
T = pnll—o )4 o Z ¢ ) and By = py(1—a). _ - _ o
i where given some chosen @ = 1+ /T,

(3)

This regression indeed is the well-known aug-
mented Dick-Fuller regression if the error in
(27 instead is assumed to be an AR(p) pro-
eSS,

The mll hypothesis of interest is to test-
ing for the presence of a unit root, ie. test-
ing Hy : v = 1 against H, 1 o < 1. Many
unit root test statisties have been proposed
in the literature. Among them. the most
popular choices appear to the ADF test by
Said and Diely (1084), DF — (LS test by
Elliot, Rothenberg and Stock (1996), 2 test
by Phillips and Perron (1988) and M2 test
by Perron and Ng (1996). The M2 test is a
modified version of the Z test, and proves to
have a better size performance in the small
samples. Furthermore, to enhance power as
in Elliot et al.. Ng and Perron {(2001) apply
the idea of the (/LS detrending to the class
of MZ test statistics, These test statistics

#9 = argmin ¥ (yf — 28, where for
any series [z 11 (28, 2 )=(ra, (1 —al)r),
=12 -...T. Notethat o, are 1 and (1. )"
respectivelv, when m = 0 and m = 1. The
value of &, as recommended by Elliot ef al.,
is chosen to bhe -T.0 for m 0 and -13.5
for m 1 under which the asymptotic lo-
cal power funetion of the DR — GLS test lies
close to the Gaussian local power envelope.
The DF — (L5 test statistic can then ob-
tained by forming a f-ratio for ey = 0 by run-
ning the autoregression with L5 detrended
data,

»
(6) A= anfh—1 + 3 @i + ey

i=1

'Howewver, our analysis that follows can be ex-
tended immediately to other test statistics not con-
sidered here, or inder the LS detrending, with snit-
able modifications,



The limiting distributions of the A5 # and
DF — (LS have been investigated in the lit-
erature. We now restate them.

Lemma 1:  If {y )7 is generated as in (1)
and (2), and is transformed by the 7 LS local
detrending as in (5). Then under the null
hypothesis that o =1, as T — ~c, if m =10,

(TPF — 0.5(1? [[ e
DF {&]LS 0.5(W? [[ W2 (e)de)
and if m =1,
= 050 [[ i
DF — CfA) 0.5V 18 — 1)

el

where W is the standard Wiener process on
[0, 1]. Wir) = Wir) — i W(s)ds is a de
meanded Wiener process for m = 0, while
W(r) = Wi(r) + 2 fL W (s)ds — 6 [} sW(s)ds
a detrended Wiener proecess for m = 1. Fur-
thermore, Vir, &) = i'l"[r] r[}iil’ (11431

A) Jo W (s)ds], and A = (1-&)/(1 &+ /3).

22 MZ and MZ - GLS

The MZ tests proposed by Perron and Ng
(1006) are based on some modifications to
the Z tests. The latter are found to possess
considerable size distortions, particularly in
the presence of negative moving average er-
rors.
the MZ tests, instead, are shown to be su-
perior to that with the & tests. There are
3 tests considered in Perron and Ng (1996,

tests

MZ,, MZ, and M5B, They are defined as
-9 2

Y L S r

(11) MZ, = ':T -“mr]”iw]‘

MSB = (L= ) and M7, = M7, «

MSRB, where n;_,znu fl; is the (LS detrended

series.?  Computation of all three tests re-

Mdeed, it is easy to show that MZ, = Za +
(T/2(an — 17 where dg is the OLS estimate from
regression (4).

The finite-sample size performance of

fuires .rs'f; . 8 parametric estimate of the spec-
tral density at frequency zero of v, It is then
computed as

72
2 Tp
S =
ART T

S i

where a; and &y, are, respectively, the QLS
estimates of coellicients on lagge d differenced

(¢)ds)TMins and residuals obtained from running

rggression in (4], and r:rIJ = Z—Iu The

znh'zln’rn;_,u of &, over other non-parametric
consistent counterparts such as those kernel-
hzlmd ones lies in its efficiency in estimation

1e spectral density at fltqm LCY ZET0, Pal-

[“J”"‘Jtlfulznh when moving average errors present

(see Perron and Ng, 1998). For ease of exposi-

1r"-zl:': 7)bdpn e only take up the MX, test statistics

below, because all three tests share similar
asyinptotic properties,

To improve the power, it is natural to apply
the idea of the (LS detrending to the MZ
tests. This is considered by Ng and Perron
(2001). Replacing g, by g, in (11), we define

R "3": a T
[J.;’l-}lllﬁr.:-l ( ‘II-"‘C)_I:T Sﬂaﬁ'.ll:ng :‘j, |:I

The following lemma summarizes the asymp-
totic behaviors of the M2, and MZ, — (' L.S

tests.

Lemma 2: Let &5, be a consistent estimate

of a?. Given conditions stated in Lemma 1.
as T s, ifm =10,
] .
(B3 0.5(W*(1) 1][[ W (s)ds) !
Ji

1
M7, (1aLS 0.5(W31) 1][£ W (&)ds) '

and if m = 1,

- | _
M)~ 0.5(W(1) 11[41-i--'=*[.em.er'f’=*

1
MZ, — CI8) 0.5V ) 1][[ﬂ1.-’2[s.r=)rih-)-'ff

where W(r), V(r &), and A are as those de-
fined in Lemma 1.



Th result simply shows that MZ, — G LS
test converges to the same limit distribution
as that of the DF — (/LS test under the
null.  Although not illustrated here, both
tests even have the same asymptotic local be-
haviors by allowing & = 1 + /T, In other
words, these tests achieves the same asymp-
totic local power that is close to the power
envelope,

3 The Bootstrap Resam-
pling Proposal

Implementation of the unit root test statis-
ties as in the preceding discussion entails
the asymptotic eritical values, tyvpically gen-
erated by simulations. The diffieulty with
the traditional approach to testing for unit
root based on the asymptotic eritical values,
however, is that the nominal size may quite
differ from the actual one in the small sam-
ples. The distortion deteriorates when nega-
tive moving-average errors oceur. The boot-
strap then serves a reasonable alternative to
the conventional asymptotic approximations.

We base our bootstrap resampling scheme
on several previous work., The bootstrap
procedure proposed by Nankervis and Savin
(19967 work for the DF tests with did er-
rors. The bootstrap considered by Ferreti and
Romo (1996) allows for AR(1) errors. Our
methods are thus a natural extension of these
earlier contributions to allow for weakly de-
pendent errors. We establish the asvmptotic
validity for most of the available unit root
test statistics by showing that the bootstrap
test statistics converge to the limiting distri-
butions.

We now detail our bootstrap resampling
schemes.

1. Suppose a sample {y}7
ated from (1) and (2).

s pener-
Let n de-

note the nuisance parameters.  De-
pending on whether m = 0 or m =
Lon = dén o gpm. F) or g =
(B, ey, F). To estimate 1,

(a) compute the residual of constrained
least square (CLS); @, by impos-
ing the mll hyvpothesis that o = 1.

T

For m = 0. & = Ay, while for
m 1 @ = Ay — Ao where
Ao =TS0 Ay

fit an AR(p) to ¢, where the lag or-
der p is chosen by the AIC or BIC
eriterion; e, i, =7 Gith_i + 43

(b)

() center the residual £, by
7« .1 i .

i £ £ — = 3 .

] ¢ Lt 2 ¢

(d) Draw a sample of sige T with re-
placement from the empirical dis-
tribution function of {7}, Fy, and

denote it by €.

2. Generate the bootstrap samples {y; | ac-
cording to

L
uo= Z Pt Ry
i=1

On the basis of the resample {y}.
compute the bootstrap counterparts of
ADF, DEF-GLS, MZ, and M ¥, GLS
as described above, denoted by ADF™,
DF - GLS MZ, and MZ, — GLS".

Repeat step 1 to 3 NB times.

[

. Compute  the empirical distribution
function (edf) of NB wvalues of various
bootstrap test statistics under study, and
use this empirical distribution funetion
as an approximation to the cumulative
distribution function {edf) of the boot-
strap null distribution for the test statis-
tics.

Make inference based on the bootstrap
eritical values.

Some words are worth mentioning. The
CLS residual is computed with the constraint
of a unit root in series. regardless of whether
the sample is from the null or the alternative.
It is easy tosee how the constraint that o = 1
in Step 1.(a) affects the computation of the
CLS residual for different models (m =0, 1),

gy FuflAm =0); = _-";[] +u_ +v (m=



given the parameter relation in (3). The im-
portance of this constraint shows again when
establishing the asvmptotic validity for the
bootstrap test statistics later.

An fit of AR(p) model to 4, is motivated
by an autoregrssive approximation to the
infinite-order moving errors in order to repro-
duce the dependence strueture of the data. In
which, the lag orders should increase as the
sample size inereases, ie. p=p(T). We will
give the speed of the lag order to ensure the
consistency of the hootstrap approximation.
Step 2 is known to be the recursive hoot-
strap. There are some comparable resam-
pling procedures in the literature, the moving
block bootstrap (Kiinsch, 1989) and station-
ary bootstrap (Politis and Romano, 1994). In
contrast to the latter two procedures, the re-
cursive bootstrap makes use of the ARM A
parametric model in reproducing error de-
pendence.  Biihlmann (1997) and Horowitz
(2000) both emphasize the merit of the use
of the recursive bhootstrap.

Centering of the residual in Step 1.(¢) not
only takes into account that the underlying
population distribution has zero expectation,

bt also works to reduee the downward hias of

the autoregression coefficients in small sam-
ples (see Horowitz, 2000).

To generate the bootstrap resample |y |,
we need first to choose starting values
(¢f, . yy). An inappropriate choice of the
1111’r1z11~, could eause systematic finite-sample
bias. To avoid these shm‘tc*nnnng we choose
y = g fori = 1,-- where e are tid
drawn from F7 and t11v.11 start generating yy
(see Swanepoel and van Wyk, 1956).

4 Bootstrap Consistency

Whether the bootstrap distributions of the
test statistics can be justified asymptotically,
i.e the consistency of the bootstrap distribu-
tion, is an important issue for the bootstrap
testing., This is because the bootstrap distri-
bution is to approximate the unknown small-
sample distribution, and thus is expected to
be asvmptotically equivalent to the limit dis-
tribution. if the bootstrap procedure is a rea-
sonable one.

Our main assumptions for the bootstrap to
vield eonsisteney are the following.

Aaaum]mnn A = ¥ ut“fr_,- where
ey~ did(0,a?y, E f, i < o, t.nﬂ 1, (L) is
non-zero on unit cirele, and 375 iy < oo,

We now present the first set of the theoret-
ical results regarding the consistency for the
bootstrap parameters.

Theorem 1 Let Azsumpfion A with p(T) =
o (T/log(T'))*/1) hold. Then, eonditional on
the sample, as T — =,

1. when m =1,

T

TiVar(y &;‘; )Var(d~ ?':I] =

t—1 t=1

=)
a,

(1-%0, )

&% = op(1) almost surely

.
- . £ .
where a; and ;2 = Z_:E;I_:P are OLS esti-

mates obtained by mnning Ayl = el +
,l { I
TEANTHERIS Sy h

Theorem 1.1 shows the consistency for the
bootstrap intercept in the ADF regression (3)
by establishing the consistency of second mo-
ments. The eonsistency is obtained under the
condition that the antoregressive lag order in
the bootstrap ADF regression should grow as
the sample increases. The condition for the
lag order however is weaker than that spec-
ified by Said and Dicky (1984) or Ng and
Perron (1996, JASA). In practice, this sug-
gests a smaller number of lag to be fit in the
bootstrap ADF regression. The estimate for
the bootstrap mean is required in the pro-
cess of detrending the bootstrap resamples
tyy t Of significance from the result is that
the bootstrap intercept can be consistently
estimated, regardless of whether the observed
data is drawn from the mull or from the alter-
native. On the other hand, the estimate for
the bootstrap autoregressive spectral density



at frequency zero is not asymptotically dis-
tinguished from the conventional the autore-
gressive spectral estimate. The consisteney
guarantees the bootstrap unit root statisties
free of the nuisance parameters in the limit.
It should be emphasized that with additional
assumptions, we are also able to establish the
consistency for the distribution function of
the bootstrapped parameters. The behavior
is not of major coneern, and thus is omitted
here.

To derive the asymptotic distributions of
the bootstrap unit root statistics, it necessi-
tates a functional central limit theory for the
bootstrap resamples. We adopt the Mallow
metrie which is defined as

da(x, y) = inf B{| X — V%1~

where X and Y are random wvariables with
corresponding distribution & and y.  Note
that the fact that ds 0 implies a con-
vergence in distribution, a crucial step in
establishing the asvmptotic validity of the
bootstrap distribution. Bickel and Freedman
(1981) elaborate the statistical properties of
the Mallow metric. The following is to pro-
vide the invariance prineiple for the bootstrap
partial sum proecess.

Theorem 3: For any sample, suppose
e} is reproduced according to the preced-
ing bootstrap algorithm defined in (d). Let-
ting T

X,

S

e = aWir)

With the bootstrap invariance principle,
we are in a position to demonstrate the con-
sistency of the bootstrap distribution of the
unit root statistics.

Theorem 4: Let Assumption A with
p(T) = o((T/log(T))"1) hold. Then, con-
ditional on the sample, for anv = © A and
m =0 and 1,

sup | PYADEY < o) P{ADF < x| Hy)

=1

sup |[P*(DF-GLS* < z) P(DF - GLS

It is important to note that this consistency
result stands, whether or not the data is sam-
pled from the null or from the alternative.
This property works to equip the bootstrap
tests with power when the truth is from the
alternative. If the proposed bootstrap fails to
replicate the null distribution but the alter-
native distribution under H,. the bootstrap
tests will possess little power. While there is
such asmall amount of the literature that has
established the asymptotic validity for some
bootstrap unit root statistics, our result ap-
pears to be the first that proves the consis-
teney to hold even under the trend stationary
alternative hyvpothesis. Of more significance
is that the consistency holds with weakly de-
pendent errors. In contrast, the consistency
shown by Ferretti and Romo (1996) is valid
for the independent and autoregressive er-
rors. Also most of the literature focuses on
the simple antoregressive model without de-
terministie trend components. In the ecase
of their presence in the model as we eon-
sider here, making the consistency argument
proves to be not quite a straightforward ex-
tension where the existence of the consistency
of the bootstrap trend is a prerequisite for
that of the bootstrap distribution.

The asvmptotic validity indeed comes from
imposing the unit root when generating the
bootstrap resamples, as emphasized in the
above algorithm. Basawa ef all  (1991a.b)
show that the bootstrap least square estima-
tor does not converge to the correct asymp-
totic unit root process, unless the unit root
constraint is placed in the resampling,

The bootstrap procedures also work for the
class of MZ test statistics as the following the-
orem states,
Theorem 5:
p(T)
ditional on the sample, for any = «
m =0 and 1,

Apain, let Assumption A with
o (T log(T))V) hold.  Then, con-
H and

1.
op( Lpup [P MA" <

<2l Hy) =

) -P(MZ <= z|Hy)| = apll)



sup | PY{M&-GLS =

We nevertheless make no elaim of the
asymptotic refinement for our bootstrap pro-
posal.  This appears very difficult because
it remains unknown whether the Edgeworth
expansion is available for the model under
study. Such an expansion is only known to
exist for the simple Gaussian random-walk
model, and none heyvond the case (see Abadir,
1993). Given the complicated nature of our
model, it may be very likely that the asyvimp-
totie refinement is impossible, based on the
current knowledge, We leave it for future re-
search.

5 Monte Carlo Simula-

tions

To assess the finite-sample performance of the
bootstrap test statisties, we report two sets of
experiments under different error processes,
AR(1) and M A(1). Becanse we are using the
autoregression approximation in reproducing
the samples, it is important to have a correct
selection of lag length. This is particularly
important in the presence of moving-average
errors. Mg and Perron (2001) in fact are in
an attempt to better choose the lag by mod-
itving the information eriterion in the con-
struction of the unit root tests. Our theory
is silent on how exact lags should be chosen
for any particular small samples, but reveals
that the lags increase with sample sizes. Fol-
lowing the practice, we set a maximum lag
orders (5 lags in the simulations), and employ
both the ATIC and BIC eriterion to select eor-
responding appropriate lags for the various
tests under study.

The data generating process is as deseribed
in the notes to the tables. The simulation re-
sults are reported from Table 1 to 8 The
replication for the asyvmptotie tests is 5,000,
and for the bootstrap counterparts 1,000
The sample sizes considered are 50, 100, 150
and 300,

There are a number of conclusions emerg-
ing from the simulations. First, our bootstrap

) -PIMZ-GLS

schemes appears to be able to well control the
size of the tests. Indeed for even the very

sriiadf bl ides of 50, the empirical rejec-

tion frequencies for the hootstrap tests is still
close to the nominal level (5%). The per-
formance of the bootstrap tests stands well
still, regardless of the error dependence strue-
ture, either MA or AR. This is considered
to be remarkable, given that the literature
has documented the poor performance of the
tests in the case of MA errors. In contrast,
the size performanee of the asvmptotic tests,
with different version of modifieation by con-
struction, comes to be reasonable when the
sample sizes is near 100 or larger. Next, the
bootstrap tests have the comparable power as
the asvmptotic counterparts, Note that the
power of the asvinptotic tests is obtained ad-

justed for the size distortion. In other words,

the power reported for the asymptotic tests
is infeasible, becanse the Onite-sample eriti-
cal values are generally unknown in applica-
tions, In some instances, the bootstrap tests
show a power gain over the asvmptotic eoun-
terparts to some minor extent. For example,
for most of sample sizes with MA errors, our
bootstrap tests is 10% more in power than
the asymyptotic tests. While we have proven
only the bootstrap consistency under the null,
the power of the bootstrap tests increases as
the sample size grows. This demonstrates,
instead. a reflection of another aspect of the
consistency for the bootstrap tests under the
alternative.  Owerall, our bootstrap resam-
pling procedures show a better size control
at no expense of power loss. comparing to the
asymptotic tests,

6 Conclusions

This paper proposes the bootstrap proce-
dures for the presence of a unit root in an
AR model. Our schemes are useful in a wide
range of applications because it is applicable
for most of dependent error structure, while
the previous proposals are only valid in the
case of iid error. Our bootstrap procedures
are shown to give the commonly-used unit
root tests excellent performance, in particu-
lar the good control over the size in the very



small sample sizes. We also offer asvmptotic
justification for the bootstrap proposals by
demonstrating their consistency. While the
bootstrap tests are able to reduce the size
distortion, there still exists room for mak-
ing improvement when the MA coefficient is
close to the unity region. Another set of our
simulations (not reported) show that in this
case, our bhootstrap tests does not perform
as well as it does when the MA coeflicient is
away from the unity region, in reducing the
size distortion. This problem is not unique to
the bootstrap tests. The asymptotic tests we
consider have a much worse-off size distortion
in the case. Future research is called for an
alternative bootstrap that still yields reason-
able size control in this problematic region.

7T Appendix
If m = 1, the series is generated by

_-?lu -+ "j'||[ -+
Oty + U]

o =

Hy =

here v = 5 s g — 5
where v, = 305 5, o = 1, 5]
iid

o, 5 0,a2), Bz /!
Under =1,

0 .'l tl'lll_.i =

L +N

-
Ny o= v, t= 3 W
j=0

Because vy ~ AR ~), it can be re-written:

=S
Z f-'-}'_.i 'E'Il__Ji = £

§=0

gn = 1.

Thus, we shall exploit & = A 3 to es-
timate AR(p), where 3, i~; tlm OLS estimate
of # z111:1 P = of| T',-"lgTJ . In addition, de-
note oy, dar. - ey A8 thv OLS estimates
of ey, dhay Ly, n.qunl to those obtained by
the Yule-Waller regression.

As a consequence,

iy

Z i = ST
=0

(A1)

T>T iz0

where {2, 1 },.I pil Are thv residuals. Let Zp =

—1 = _ = = e
(T—p) '8 pit St Sur = Sy Sp. Draw
samples from {2,417 denoted by =11

ol Sele
Reproducing the error process based on (A1),
we have:

pry

| o . ™
Z PiTVyi = &7

i=0

(A2)

Then reproduce the series by -
Nyt = A+,
denoted by {ur 1T .
Let & (L) = S5, oyl

R
by Z.it 0 t-'.i.’I'L".
about DGP and p(T), there exists some T,
such that

and (L)

Given the assumptions

x
SILp 3l < oo, sup |dyr—iy| = o(l).

O e

Denote FLp to be the empirieal distribution
function (edf) of { £, 7] T F. o is the edf of
ley.ga - ap ), Fois the edf of {2y, 50, |
As a result,

da(Fir. Fo) < dy(Flp. Fon) + da(Frr. FL)
Due to Bickel and Freedman ([(1981),
f?';gl:.lr'z-_'r.;'i-:lx « 0. Also, by Bithlmann

(1997), da( Ly, FLp) — 0, we have
dy( Py, L) — 0,
that is.

Becanse fa'gl[ﬁ’c-;;-. F2y - (), and there exist

teot and {274 such that inf s holds,

f?l:zl:ﬁ':-:_,r. ;I:E:I — [fl_: C_,l, :_: a ]I.,-"E

Let Sppy and Sgp,

1 [T
S = —=3 =0
ST — g
’ -.,T,-|
o B 1 |I.l|_
e == —_ ¢
[T ".Trl



and based on FCLT, Sy = a.W{r).
Let Vi and V7, be given to he:

. , , , , . would hold provided that
L’I’.F-' ['&'”'I‘ll' "HITTzI '“HlTl'll' — nr'f'rl'.l';-l n‘f'|f;'rr-h,_||LiJ sup Vi - r 0
I - T . T I'r T
1"'1".!-' = [HI'I ri HII:‘zI "HI’I'NI' ' HI’I i "HI’I':",-,_||] re(0,1] (] Tr]
where 0 < 1y < 79 < - _ Therefore. This can be shown to hold as follows., Given
any arbitrary v < [0, 1], and i = 0
i [{Try] ;,.' 1_.-"__1-_ 1_.-"__1:_0
o3 (Vi Vi) ?Z D E(m=)? P Viee — Vitm| = 1) < (rr] [*%]
J=le=[Try_,|+1 i
where
_ _Z TSy .
= T GlEp — =7 . ) S .
t EVig—Viy = E Z(‘If[fj RAEABIEN
d2(Fp. FL) VT {5
L
0 —?Z WLy W L) E e
In other words, Sf., converges to Sp, in Ve B
finite-dimension distribution. e 1 Tl = .
"\[m to prove the tightness of Sg.,. For - R o E[Z[:] W — Wl
0 - < 7 < 19, there exists a non-decreasing - !
fllllC'Tiilll such that = rElg|Y t:;'!_,i U
“ | Ty Ty T . -y V] i=0
P*(|Sfre)—|Sirey| = A [Sfreg —|Sfe | = A) < A Yea(ra)—wolr ))? .0
This holds because This is beeause sup;.; .. t,._l. t,."!J; 0 as
+ T T - T T - ! T —|- J‘S[] * [bl " b ll‘::.l []u
P* (St — |Sfrw] = A Sfreg — Sfin| = 2) <7 X ESi0 S [ W et m*  Viis
AtA sup (Vg — Vidy il
re(0,1)
B PR v ek 3 —wln 2 - . .
where by letting w(r) = w k(= We thus have reached the following important
4 o w 2 result,
A = E -c:‘[’l'.l'| ""r;,. | v B -c:'|Ir£| 5|T.l'| ]Ir.ii;-irl — L.Li-l[n’"j
. I'e . [T
1 E E(23?) + 1 ril E(=2) Denate ¢! to be the GLS detrending #;.
TJ; (Tr| |I ' Pl e Because 7 = 9 + @, + v;, by the same
( 2 (e ,,,__g.jlz argument as in Elliot et al. {1996), we obtain:
] (| J .
= (plra) — (i)™ == wl,(r.)

This proves the tightness of S5, giving

Sire) == a:W(r)

Recall that o i ise— = P¥(l)=s
and 3777, W) < ~c. We thus have Viry =
_|11_ !-“]I".l. = whV [n"‘] w="Tl)r..

Becanuse -e, =30 ) NTE—j = = U(L)=,

let Vify = =307

[Tr] = LU
o Y
\'ITI'I —

and
we need to show:

wW(r)

“ gk ) T = T — 1 [Tr] un
Let vy = > ieo Vists ]"|'rr| = FF =l U
Because Vi), == wW(r], the claim above

g_'T'&F""' -
Becanuse F — (LS* is a {-statistic for Hy
itg = 0 in the following regression,
S = oot angy g+ S+

As deriving the asvmptoties of DVF
we finally have:

AN .f:*ir'.‘—,u +Ep
LS,

Vell, &) — 1
20 fo VE(r, )12
which have the same limiting distribution as
DF LS as asserted. Similar arguments are

applicable to ADF*, M &+ and MZ — L5

D — GLS =

10
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Table 1: Size and Power of Unit Root Test
Statistics, DF — GLS

Panel A: me = 0 and AR(1) error

12

T i DF —-GLS DF -GLS* DF -GLS DF—-GL
AIC AlC BIC BIC
Al 1 (1.12% (1040 0113 [.057
100 1 [.082 [.042 0075 (10500
150 1 [.0G0 (.060 (1,066 (.056
A00 1 (L0506 0062 [1.054 (1050
00 (.00 n.210 1.165 .223 n.1o7
100 0.90 (L5506 (.436 [.585 (.626
150 0.90 (LELG n.raz .848 0.704
a00 080 (1.005% (1, 0s0) (1,505 (1.00%
Al (.85 (1.314 231 0.334 0,203
10 .85 (1.750 [.616G 0503 [.737
150 (.85 (1.044 (1563 1.8971 1.945
a0 N.E5 1.000 (1000 1.000 1.000
ol (.80 0.4006 0203 0,439 03067
100 080 [1LEGS (1.736 0913 (1.250
150 (.80 075 .034 1.8904 0951
aoo - 0.En 1.000 10000 1.000 1.000
Panel B: m = 1 and AR(1) error
T fl DF —-@gLS DF-GLS* DF —-GLS DF-GL
AlC AlC BIC BIC

Al 1 164 0.0y .120 [.naa
100 1 [.094 (L0036 0078 0.041
150 1 (L0723 (042 (10065 (.054
A00 1 (.052 0035 0.047 0.043
a0 0.00 [LORL .040 (1,080 0043
100 0.90 211 1.137 1.225 0.217
150 0.90 (1.423 1.330 0456 0401
a0o 080 0.047 (156G [1.9G0 0.026
A (LEG 116 [.064 .12% 0074
100 .85 (1,360 1.236 (1.306 .a71
150 (.85 (1L.G00 .632 .42 (1.G50
aog N.EL (.095 0073 (1,800 .904
A0 (.80 0141 0075 017h 007
100 .80 516 .356% .57 0.617
150 (.80 R Y (. 603 .808 (1. 230
ann 0N (1.095% (1,004 1.000 (1900

Note:
1. DGEP is as described in (1) and (2) where we set

by = 5 =0, v = v,y + €. with & = (L5,

£ g N0, 1), and o =1, 0.0, 0,85, 0.8,
2. The replications for the asympiotlc tests arc

5000, while for the bhootstrap tests are 1000

(=N H).
3. The 5%-level asymptotic critical value of the

DF — LS test is —1.98 for e = 0 and —2.91

for m =1.
4. The lag orders p fit to the hootstrap ADF re-

gression and to the hootstrap antoregression in
reproducing the samples are separately chosen
by hoth AIC and BIC. The maximmn lag orders

e

arc =ct to he 5.



Tahble 2: Sie and Power of Unit Root Test

Tahle 3: Size and Power of Unit Root Statistics,

Statistics, DF DF — GLS
FPanel A:m =0 and AR error Panel A m =0 and MA(1) error
T 1 DOF  DF* DOF DF°* T l DF —-GLS DF-GLS* DF -GLS DF-GL
AIC  AIC  BIC BIC AIC AlC BIC BIC
all 1 0087 0.026 0.0 0.037 Al 1 [1.23% (1061 .285 0.10=
100 1 0069 0036 0.060  0.036 100 1 (1.147 (L.OGT (1.204 0116
150 1 n.061 0052 0056 0.045 150 1 114 0073 0174 0116
00 1 0055  0.035 0052 (0.042 300 1 (L0081 [.066 122 0075
A0 000 0117 00681 0116 0073 a0 0.0 0.184 0n.1vv 0,106 .332
0o 080 0230 0165 0244 0221 100 0.90 (1.402 0.437 1.443 (1.G01
150 080 0449 0354 0464 0422 150 0.090 (1504 (.662 (1.646 0.74%
an0 o 080 0849 0860 0069 0.047 300 0.00 [1LEG5 (1565 (1,585 (1.9010
R0 085 0.1a4 0077 0167 0107 A (LEG (1273 1.245 (1.204 (1. 409
10 085 0407 0283 0436 0.358 0 0En 0.540 0.531 [.605 0678
a0 (085 0.720 05681 0756  (0.687 150 (L85 (1691 .725 [.752 (.810
a0 085 0085 0032 0000 0.006 ang 0.Es (L8732 .E7s .804 0014
A0 00 0214 009y 0221 0136 a0 (L&D (1366 1.316 0.405 .40
10 080 0570 0802 0616 0.526 100 0.s0 0.603 0.503 .G85 .72
150 .80 0875 0717 0014 (.858 150 (L&D (.711 (.73 [1.780 (213
a00 0 080 0899 0098 1.000  1.000 a0 s (.56 [.878 (.5884 .900
Panel B: e = 1 and AR error Panel B: m =1 and MA(1) erraor
T I DF  DF° OF  DE°" T n DF —&LS DF —GLS* DF —GLS DF—GL
AIC  AIC  BIC BIC AlC AlC BIC BIC
Al 1 0130 0.0210  0.098  0.019 Al 1 (.338 .41 (.373 (.00
100 1 0087 0028 007 0.042 100 1 217 (100 1.304 0142
150 1 0071 0040 0062 0.046 150 1 (1.161 (1060 1.263 (1.120
an0 1 n.0s9 0040 0052 0.045 aon 1 0,091 0.068 n.iva 115
A0 000 0082 0026 007 0.034 a0 .90 0.104 (L0709 1.105 01064
0o 080 0147 0001 0149 0128 100 0.00 (.227 0217 (1.24%8 (1.350
A0 080 0283 0195 0280 0.257 150 0.90 (1385 (1.420 1.443 (.G16
a0 080 0E1T 0672 0855 0800 a00 - 080 (1.864 (.67 (1.8G5 0926
A0 O35 0102 0032 0103 0052 50 085 0.155 (.05 .15% 213
100 085 0241 0130 0287 0,922 100 (.85 1.391 0327 01.440 (A5G
150 085 0488 0335 0525 0454 150 (L85 (1504 (L6007 (1,90 0.754
a0 08s 0971 0804 0882 0068 300 .85 (.22 [.935 (1.036 1.961
A0 00 0126 0040 0133 0065 a0 (L&D (1,220 1124 (1,259 REN]
100 080 0360 0.200 0385 0342 100 (.80 (1.634 (1.430 (.520 (1.G3%
1R0 080 0699 047 0741 [.646 150 (L8N [.7006 .743 [1.513 [LR3AT
a0 080 0894 0067 0000 (0.088 00 0.En (1.033 .042 (1.949 [.962

Note:

. DGE 18 as described in (1) and {2) where we set
A = d =0, 1 = dwp—y + ee—1. with & = (0.5,
£ m (0,1, and e = 1,08, 01L.85 (1.8,

2. The replications for the asvinptotic tests are

000, while for the bootstrap tests are 1000
(=Nn).

3. The 5%-level asymptotic critical wvalne of the

DF test is
me = 1.

186 for m = 0 and —3.41 for

. The lag orders p fit to the hootstrap ADE re-13
gression and to the bootstrap antoregression o
reproducing the samples are separately chosen
b bhoth AIC and BIC. The maxinmun lag orders
are sct to be b,

Note:

1. DGEP i= as described in (1) and (2) where we set
Ao =& =00 v =& + ey, with # = —(1.5,
e N1y, and e =1, 0.9,0.85, 0.8,

| )

The replications for the asymptotic tests aro
5000, while for the hootstrap tests are 1000
(=N L.

3. The 5%-level asymptotic critical value of the
DF —GLS test is —1.98 for me = 0 and —2.091
for m = 1.

4. The lag orders g fit to the hootstrap ADF re-
gression and to the hootstrap antoregression in
reprocducing the samples are separately chosen
by hoth AIC and BIC. The maximmn lag orders
are =ot to be 5.



Table 4: Size and Power of Unit Root Statisties, DF

Table 5: Size and Power of Unit Root Statistics,

e “N(D.1), and o = 1,0.9, 085, 0.8,

2. The replicationz for the asvioptotic tests are

5000, while for the hootstrap tests are 1000

(=N B).

3. The 5'%-level asymptotic eritical valoe of the

DF test 1=
m = 1.

286 for m = 0 and —3.41 for

. The lag orders p fit to the bootstrap ADF re-
gressiom and to the bootstrap antoregression inld
reproducing the samples are soparately chosem
b both AIC and BIC. The maximmum lag orders
are 2ot to bo b

]

Ag = 4 =00 v, = dwy_y + e, with & = (1.5,
£ i N{O. 1), and o =1, 0.9,0.55, 0.8,
The replications for the asymptotlc tests are

S000, while for the hootstrap tests are 1000
(=N H).

. The 5%-level asvmptotic critical value of the

MZ — GLS test is
for m = 1.

51 for m = 0 and —17.3

. The lag orders p fit to the hootstrap ADF re-

gresaion and to the hootstrap antorogression n
reproducing the samples aro separately choson
bv both ATC and BIC. The maximmm lag orders

are =ot to be O

Panel A: m =0 and MA(1) error MZ —GLS
T o TFE T TF TE" Panel A: m =0 and AR(1) crror
A0 NS SN B T il MZ -GLE MZ -GLSY MZI-GLS MZ-G
50 1 0.181 0043 0203 D.077 AlC AlC BIC BIC
100 1 0,137 00685 0188 0002 a0 1 0.174 .038 0.139 .05
150 1 0116 00680 0176 0118 1001 1 0101 (1.030 0.0s87 0.047
ann 1 0077 0080 0121 0.081 150 1 0.0%1 (3.050 0.074 0.054
B0 000 0151 0102 0164 0.00% 001 0.065 0.053 0.060 0.04¢
100 090 0385 0282 0418 04732 00 000 0137 0125 0.180 0.174
150 080 057 0641 0656 0716 100 0.00 0.477 (0.397 0.652 0.520
000 090 0972 0066 09581 0.8089 150 0,90 0.796 (1.G20 0.837 .78
0 0&h 0951 0.14® 0.2 0o a00 0,00 0.090s (3.990 1.000 0.005
100 085 0619 0460 0604 0.6GGR 50 085 0152 01ve 0266 0. 260
150 085 0820 0.739 0.880 0875 00 0.85 0.G87 0.584 0.774 0.72%
00 0350 0090 0007 0999 0000 150 (.85 0.937 (1.857 0867 .04
R0 DR0 D377 0212 0407 0803 ann nEL 1.0000 0.09= 1.000 1.00¢
100 080 07sR 0621 0867 0775 R 0.233 0.245 0.344 0.a%s
16500 (A0 0.025  0.9290 0080 0.058 100 (s (.816 0.700 (1,500 (1. 84
00 030 1000  1.000 1000  1.000 150 0.80 0.972 0.034 0.993 0.97E&
300 0.E0 1.000 1.000 1.000 1.00¢
Panel B: m = 1 and MA(1) error
T o TF E" TF oE" Panel B: m =1 and AR({1) error
AIC AL BIC BIC T il MZ-GLS MFZ-GLSY MZ-GLS MZI-G
A 1 0237 0032 0300 0.001 AlC AlC BIC BIC
100 1 0220 000 0205 01245 i 1 0261 0.023 0.1549 .02
150 1 navE 008 027 0115 100 1 138 0.034 0.034 0.041
a0 1 0107 00688 0193 0107 150 1 0.0=0 (.044 0n.0a67 0.054
0 090 D008 0056 0099 0134 a0n 1 (.058 0.037 .049 0.04E
o 080 0213 01w 0224 032y T VRETY] 0061 (.03% 0068 .04
150 000 037 0331 0422 0519 100 0.00 0.143 (.120 0.202 0.207
a0 000 08T 0863 0872 0025 150 0.00 0.3 .318 0.430 0.301
RO 85 0142 0.088 0145 0169 aon .00 (1.943 (1.3G3 0.068 .035
100 085 0300 0233 0436 0485 A0 TLEG .06 (.044 0.0s0 007
150 085 0647 0572 0738 0.737 100 085 .295 0.2a7 0.358 0.a53
a0 085 09581 0000 0990 0005 150 .85 0.G12 0.518 0.711 0.635
50 080 0200 0107 0216 0221 300 D.85 0.095 0.974 0.909 0.99:
100 080 0.e06 0428 0670 0610 A0 (LED 0067 0.061 0,006 0n.10s
150 080 0816 0763 0903 0.869 100 0.0 [.328 1,331 0.515 0.405
00 080 0998 0000 0920 0008 150 .80 0.7%0 (.684 0.830 0820
- a00 - 0.s0 0.908 (1.994 1.000 (.005
Note:
. DOP 15 as described in (1) and (2) where we set Note:
o= =0 v =& +fey, with # = —0.5, 1. DGP is as described in (1) and (2) where we set



Tahle 6: Se and Power of Unit Hoot Statistics,

MZ

FPanel A: m =0 and AR(1) error

Tahle 7: Size and Power of Unit Root Statistics,
MZ — GLS

Panel A: m = 0 and MA(1) error

o= =0 vy = dry_y + 6_q. With o = (L5,
£ e (0,17, and v = 1,000, 0,85 0.5,

2. The replications for the asyinptotic tests are

000, while for the hootstrap tests are 1000
(=N B).

3. The 5%-level asymptotic eritical value of the

ME test i=
m o= 1.

141 for e = 0 and —21.3 for

. The lag orders p fit to the bootstrap ADF re-15
gregsion and to the hootatrap auroresression in
reproducing the samples are soparately chosen
by both AIC and BIC. The maximum lag orders
are =ot to be b,

| )

Ao = @ =00 v, = ¢, +Heq, with # = —(.5,

e N1, and o = 1.0.9,0.85, 0.8,

The replications for the asvmptotic tests are
SO00, while for the hootstrap tests are 1000
(=NEB).

. The 5%-level asyvmptotic critical valne of the

MZ — GLS test is
for m =1.

81 for m = 0 and —17.3

The lag orders p fit to the bootstrap ADF re-
gresgion and to the hootstrap autoregression in
reproducing the samples are soparately chosen
kv hoth AIC and BIC. The maximmn lag orders

B

are =ot to he &,

T 0l MZ Mzv MZ MZ+ T 0 MZ-GLS MZ-GLS* Mz-GLS MZ-C
ATC AlC BIC BIC AT ATIC BIC BIC
Gl 1 0118 0033  0.072  0.040 a0 1 (.1=% (.00 0.220 (.00
Y] 1 0068 0041 0047 0,041 100 1 0131 (.0G6 (.153 11!
150 1 nos4  0.047 0041 0.051 150 1 0,103 (.07% 0.1a0 0.11:
300 1 0043 0.037 0036 0038 ann 1 0.07= [0.053 n.12n (1.0
G0 000 0106 0102 0155 0.145 50 0.00 0160 0170 N.185 0.3
0 080 0344 0207 0419 0399 100 0.0 0.370 0.447 0.424 .60
150 080 0620 0547 0708 0.636 150 (.60 (1.ERO (.659 .G18 (.75
300 080 00938 00966 0007  (0.038 ano 000 0861 [.864 0.873 .80
G 0Es 0,127 0U1sT 0221 0.213 A (LKL [0.242 .231 1,274 .41
0 0.8 0525 0442 0637 0.539 100 0.85 0.502 (.654 (.576 .60
10 085 086 0745 00918 0.869 150 .85 0.648 0,727 0n.723 n.s1:
300 085 00099 0997 1.000  1.000 ann - N85 0.851 [.878 [.880 (.00
G0 080 00147 U188 0283 0.268 T n.312 (1.2006 0.363 [T
o 080 067 0684 0796 (0728 100 .80 (1.hAG (.6016 (.657 .72
10 080 0945 0861 0981 0.054 150 0.80 .664 [.738 (.755 (.53
oo 0s0 oo 1000 1000 1000 ann o 0.sn [.732 [.873 [1.567 (1.5
Panel B: m =1 and AR(1) error Panel B: m = 1 and MA(1) error
T o M£ MzZv Mz MZIY T 0w MZ-GLS MZ-GLS* MZ-—GLS MZI-—C
AIC AIC BIC  BIC AIC AIC BIC EIC
ol 1 02458 0,027 0129 (0.033 50 1 (. 1=2 [.042 .162 (1.0
100 1 0120 0037 0068  0.043 100 1 0145 (.00 (1,200 014
150 1 noa2 0041 0057 0080 150 1 0117 (.068 0.199 n.1a
ann 1 0060 0037 0.045  0.044 21000 1 (L0732 (1060 0.141 011
o 0.0 n0sG 0036 0064 0.049 ] 0073 (1.06G5 0.005 .15
o 060 0120 0108 0176 0179 100 000 0.200 (.223 (1.235 (.30
10 080 027 0.261 027 033 150 090 0.373 (.420 0.424 .60
300 080 0.sTE 0791 0.031  (0.885 ann 000 [.821 [1.874 [1.845 .91
G0 085 0058 0047 0072 0068 50 LR D] RER] 134 .20
o 0.8 017 0183 0302 0305 100 (.85 (1240 (.2606 0.412 .55
10 085 0472 0446 0626 0572 150 (.85 (.558 (1.629 1.GE2 e
300 0.8 0085 0933 0007 0.03G 00 0.8 (1800 (1.830 n.a1s .05
a0 00 0.0aE0 0062 0030 0.101 0 (.80 0.10= .114 .1%4 01,205
0 080 02300 0270 0436 0.440 100 .80 (.40 (1.460 (.583 (.63
150 080 0657 0.500 0819 0.750 150 080 (.60 (.7R0 1751 .84
300 080 0007 0885 1.000  0.008 a0 L&D (1,805 (.049 .63 .06
MNote: MNote:
. DGP is as described in (1) and (2) where we set 1. DGP is as described in (1) and (2] where we set



Tahble 8: Skge and Power of Unit Root Statistics,
MZ
Panel A: m =0 and MA{1) error
T o MZ MZr MI MZr
ATC  AIC  BIC BIC

0] 1 ni1i0 0052 0107 0101
100 1 N0t 007 01420 0.119
150 1 084 0065 0240 0131
300 1 0057 0062 0106 0.090

S0 000 0,153 0150 0183 0407
o 000 0417 0413 0460 0.629
150 000 0623 0718 0705 0.544
ann 090 0085 0991 0088 0997

GO 0EG 0.2320 0211 0283 0418
o 0.8 0637 0631 0718 0.709
150 085 0.832 0000 0804 0.042
ann 085 0000 0990 0000 1.000

GO 0E0 0,322 0280 0400 0.403
o 080 0781 0762 0864 (.8G69
150 080 0921 0875 0.965  0.085
ann 0800 1000 1.000  1.000  1.000

Panel B: me = 1 and MA{1) error
T o MZ MZy MZ MZr
AIC AIC BIC BIC

] 1 nics 0039 0110 0.003
100 1 0146 0052 0175 0.149
150 1 0124 0062 0199 0135

300 1 nos2 007 0158 0122
GO 000 0067 0057 0003 0.14%
0 0800 0204 0213 0220  0.302
150 080 0354 0391 0436 0.605
300 080 0870 0927 0876 0968
GO 0Es 0OvE 0083 0120 0192
o 085 0364 0348 0421 0.569
150 085 0640 0641 0736 05591
ann o 085 097 0994 0886 0.995
GO 0E0 0090 0108 0181 0.245
0 080 0544 0481 0637 0.685
150 080 0797 0,833 (0.58F
ann o 080 0994 1.000 0888 (.999

Note:

L. DCP s as deseribed in (1) and {2) where we aot
Ay = @ =0 v, = & + #ey,_y. with # = (15,

e S N(D,1), and o = 1,00, 0,85, 0.8,

2. The replications for the asymptotic tests are
5000, while for the bootstrap tests are 1000
(=N B).

3. The 5%-level asyvmptotic critical valune of the

ME test is —14.1 for me = 0 and —21.3 for
m = 1.

4. The lag orders p fit to the bootstrap ADF re-|5
gression and to the bootstrap antoregression in
reproducing the samples are separately chosen
b both AIC and BIC. The maximum lag orders
are sot to be b,
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