Citation Infomation |
社群 sharing |
Field | Value |
---|---|
Title: | Quantification of Non-Water-Suppressed MR Spectra with Correction for Motion-Induced Signal Reduction |
Authors: | Lin, Jyh-Miin ; Tsai, Shang-Yueh ; Chung, Hsiao-Wen ; Cheng, Chou-Min ; Yeh, Tzu-Chen ; Liu, Hua-Shan 蔡尚岳 |
Contributors: | 應物所 |
Keywords: | non–water suppressed MRS;in vivo single voxel spectroscopy;motion correction;spectral processing;signal restoration |
Date: | 2009.12 |
Issue Date: | 2014-04-10 11:16:19 (UTC+8) |
Abstract: | Intrascan subject movement in clinical MR spectroscopic examinations may result in inconsistent water suppression that distorts the metabolite signals, frame-to-frame variations in spectral phase and frequency, and consequent reductions in the signal-to-noise ratio due to destructive averaging. Frame-to-frame phase/frequency corrections, although reported to be successful in achieving constructive averaging, rely on consistent water suppression, which may be difficult in the presence of intrascan motion. In this study, motion correction using non–water-suppressed data acquisition is proposed to overcome the above difficulties. The time-domain matrix-pencil postprocessing method was used to extract water signals from the non–water-suppressed spectroscopic data, followed by phase and frequency corrections of the metabolite signals based on information obtained from the water signals. From in vivo experiments on seven healthy subjects at 3.0 T, quantification of metabolites using the unsuppressed water signal as a reference showed improved correlation with water-suppressed data acquired in the absence of motion (R2 = 0.9669; slope = 0.94). The metabolite concentrations derived using the proposed approach were in good agreement with literature values. Computer simulations under various degrees of frequency and phase variations further demonstrated robust performance of the time-domain postprocessing approach. Magn Reson Med, 2009. © 2009 Wiley-Liss, Inc. |
Relation: | Magnetic Resonance in Medicine ,62(6), 1394-1403 |
Data Type: | article |
DOI: | http://dx.doi.org/10.1002/mrm.22119 |
DCField | Value | Language |
---|---|---|
dc.contributor (Contributor) | 應物所 | en_US |
dc.creator (Authors) | Lin, Jyh-Miin ; Tsai, Shang-Yueh ; Chung, Hsiao-Wen ; Cheng, Chou-Min ; Yeh, Tzu-Chen ; Liu, Hua-Shan | en_US |
dc.creator (Authors) | 蔡尚岳 | zh_TW |
dc.date (Date) | 2009.12 | en_US |
dc.date.accessioned | 2014-04-10 11:16:19 (UTC+8) | - |
dc.date.available | 2014-04-10 11:16:19 (UTC+8) | - |
dc.date.issued (Issue Date) | 2014-04-10 11:16:19 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/65240 | - |
dc.description.abstract (Abstract) | Intrascan subject movement in clinical MR spectroscopic examinations may result in inconsistent water suppression that distorts the metabolite signals, frame-to-frame variations in spectral phase and frequency, and consequent reductions in the signal-to-noise ratio due to destructive averaging. Frame-to-frame phase/frequency corrections, although reported to be successful in achieving constructive averaging, rely on consistent water suppression, which may be difficult in the presence of intrascan motion. In this study, motion correction using non–water-suppressed data acquisition is proposed to overcome the above difficulties. The time-domain matrix-pencil postprocessing method was used to extract water signals from the non–water-suppressed spectroscopic data, followed by phase and frequency corrections of the metabolite signals based on information obtained from the water signals. From in vivo experiments on seven healthy subjects at 3.0 T, quantification of metabolites using the unsuppressed water signal as a reference showed improved correlation with water-suppressed data acquired in the absence of motion (R2 = 0.9669; slope = 0.94). The metabolite concentrations derived using the proposed approach were in good agreement with literature values. Computer simulations under various degrees of frequency and phase variations further demonstrated robust performance of the time-domain postprocessing approach. Magn Reson Med, 2009. © 2009 Wiley-Liss, Inc. | en_US |
dc.format.extent | 1089954 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.relation (Relation) | Magnetic Resonance in Medicine ,62(6), 1394-1403 | en_US |
dc.subject (Keywords) | non–water suppressed MRS;in vivo single voxel spectroscopy;motion correction;spectral processing;signal restoration | en_US |
dc.title (Title) | Quantification of Non-Water-Suppressed MR Spectra with Correction for Motion-Induced Signal Reduction | en_US |
dc.type (Data Type) | article | en |
dc.identifier.doi (DOI) | 10.1002/mrm.22119 | en_US |
dc.doi.uri | http://dx.doi.org/10.1002/mrm.22119 | en_US |
NO.64,Sec.2,ZhiNan Rd.,Wenshan District,Taipei City 11605,Taiwan (R.O.C.)
11605 臺北市文山區指南路二段64號 Tel:+886-2-2939-3091
© 2016 National ChengChi University All Rights Reserved.
DSpace Software Copyright © 2002-2004 MIT & Hewlett-Packard / Enhanced by NTU Library IR team Copyright © 2006-2017 - 問題回報 Problem return